cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A111574 a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4, with initial terms 1,-1,2,3.

Original entry on oeis.org

1, -1, 2, 3, 3, 4, 9, 15, 22, 35, 59, 96, 153, 247, 402, 651, 1051, 1700, 2753, 4455, 7206, 11659, 18867, 30528, 49393, 79919, 129314, 209235, 338547, 547780, 886329, 1434111, 2320438, 3754547, 6074987, 9829536, 15904521, 25734055, 41638578, 67372635
Offset: 0

Views

Author

Creighton Dement, Aug 10 2005

Keywords

Comments

See comment and FAMP code for A111569.
Floretion Algebra Multiplication Program, FAMP Code: -4baseiseq[B+H] with B = - .25'i + .25'j - .25i' + .25j' + k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and H = + .75'ii' + .75'jj' + .75'kk' + .75e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,1},{1,-1,2,3},40] (* Harvey P. Dale, Jan 24 2017 *)

Formula

G.f.: (-1+2*x-3*x^2)/((x^2+x-1)*(x^2+1)).

Extensions

Name clarified by Robert C. Lyons, Feb 06 2025

A362750 Number of total dominating sets in the n-double cone graph.

Original entry on oeis.org

4, 16, 79, 336, 1144, 4351, 17224, 67936, 267919, 1063216, 4233904, 16882191, 67380304, 269142736, 1075602319, 4299846976, 17192621224, 68752838911, 274965310744, 1099740514416, 4398645585679, 17593754283616, 70372850295904, 281485727082511, 1125928050595744
Offset: 1

Views

Author

Eric W. Weisstein, May 02 2023

Keywords

Comments

The n-double cone graph is defined for n >= 3. The sequence has been extended to n=1 using the formula/recurrence. - Andrew Howroyd, May 03 2023

Crossrefs

Programs

  • Mathematica
    Table[1 + 4 (-1)^n + 4^n + LucasL[2 n] + 4 LucasL[n] Cos[n Pi/2], {n, 20}] (* Eric W. Weisstein, Sep 09 2023 *)
    Table[(2 Cos[n Pi/2] + Fibonacci[n + 1] + Fibonacci[n - 1])^2 + 4^n - 1, {n, 20}] (* Eric W. Weisstein, Sep 09 2023 *)
    LinearRecurrence[{7, -15, 18, -24, -6, 27, -15, 13, -4}, {4, 16, 79, 336, 1144, 4351, 17224, 67936, 267919}, 20] (* Eric W. Weisstein, Sep 09 2023 *)
    CoefficientList[Series[4/(1 - 4 x) + 1/(1 - x) - 4/(1 + x) + (3 - 2 x)/(1 + (-3 + x) x) - 4 x (3 + 2 x^2)/(1 + 3 x^2 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 09 2023 *)
  • PARI
    a(n) = {(fibonacci(n+1) + fibonacci(n-1) + I^n + (-I)^n)^2 + 4^n - 1} \\ Andrew Howroyd, May 03 2023

Formula

From Andrew Howroyd, May 03 2023: (Start)
a(n) = A001638(n)^2 + 4^n - 1.
a(n) = (A000032(n) + 2*A056594(n))^2 + 4^n - 1.
a(2*n-1) = A302603(4*n-1).
a(n) = 7*a(n-1) - 15*a(n-2) + 18*a(n-3) - 24*a(n-4) - 6*a(n-5) + 27*a(n-6) - 15*a(n-7) + 13*a(n-8) - 4*a(n-9) for n > 9.
G.f.: x*(4 - 12*x + 27*x^2 - 49*x^3 - 215*x^4 + 369*x^5 - 237*x^6 + 207*x^7 - 64*x^8)/((1 - x)*(1 + x)*(1 - 4*x)*(1 - 3*x + x^2)*(1 + 3*x^2 + x^4)).
(End)

Extensions

a(1)-a(2) prepended and a(16) and beyond from Andrew Howroyd, May 03 2023

A232965 Number of circular n-bit strings that, when circularly shifted by 3 bits, do not have coincident 1's in any position.

Original entry on oeis.org

1, 3, 1, 7, 11, 27, 29, 47, 64, 123, 199, 343, 521, 843, 1331, 2207, 3571, 5832, 9349, 15127, 24389, 39603, 64079, 103823, 167761, 271443, 438976, 710647, 1149851, 1860867, 3010349, 4870847, 7880599, 12752043, 20633239, 33386248, 54018521
Offset: 1

Views

Author

Gideon J. Kuhn, Dec 02 2013

Keywords

Comments

K[n;s] = L[n/gcd(n,s)]^gcd(n,s) counts circular n-bit strings that, when circularly shifted by s bits, do not have coincident 1's in any position. K[n,s] = #{x|((x<<
K[n;1] = L[n] is the Lucas sequence; K[n;2] is the Fielder sequence A001638; K[n;3] is this sequence.

Examples

			K[1;3] = L[1] = 1; K[2;3] = L[2] = 3; K[3;3] = L[1] = 1; K[4;3] = L[4] = 7;
K[5;3] = L[5] = 11; K[6;3] = L[2]^3 = 27; K[7;3] = L[7] = 29; K[8;3] = L[8] = 47.
		

Crossrefs

Cf. A000032 (Lucas sequence), A001638 (Fielder sequence).

Programs

  • C
    int gcd(int n, int s)//Return the gcd of n and s
    int raiseToPower(int n, int d)//Return n^d
    #define N 40
    #define S 3
    int Lucas[N+1] = {2,1,3,4,7,1,18,....};
    main()
    {
    int n;
    for(n = 1; n < N; n++)
    printf("%i: %i\n",n,raiseToPower(Lucas[n/gcd(n,S)],gcd(n,S)));
    return;
    }
    
  • Mathematica
    A232965[n_] := LucasL[n/#]^# & [GCD[n, 3]]; Array[A232965, 50] (* Paolo Xausa, Feb 25 2025 *)
  • PARI
    L(n) = fibonacci(n-1) + fibonacci(n+1);
    a(n) = L(n/gcd(n,3))^gcd(n,3) \\ Rick L. Shepherd, Jan 23 2014

Formula

a(n) = A000032(n/gcd(n,3))^gcd(n,3).
K[n;3] satisfies the (empirical) linear recurrence a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) +a(n-5) + a(n-6) - a(n-7) - a(n-8), n > 8, derived from the denominator polynomial (1+phi^(-1)*x)*(1-phi*x)*(1-phi^(-1)*x^3)*(1+phi*x^3) of the generating function, where phi = (1+sqrt(5)/2), the golden ratio.
Empirical g.f.: -x*(x-1)*(8*x^6+15*x^5+9*x^4+4*x^3+3*x+1) / ((x^2+x-1)*(x^6-x^3-1)). - Colin Barker, Oct 10 2015

Extensions

More terms from Rick L. Shepherd, Jan 23 2014
Previous Showing 11-13 of 13 results.