cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A117882 Partial sums of floor(Pi^n).

Original entry on oeis.org

1, 4, 13, 44, 141, 447, 1408, 4428, 13916, 43725, 137373, 431577, 1355846, 4259523, 13381694, 42039839, 132072059, 414916622, 1303499025, 4095062974, 12865019770, 40416651612, 126972655803, 398896362696, 1253169882609
Offset: 0

Views

Author

Jonathan Vos Post, May 02 2006

Keywords

Comments

The only prime in the sequence through a(50) is a(2) = 13.

Crossrefs

Cf. A001672.

Programs

  • Mathematica
    Accumulate[Table[Floor[\[Pi]^n],{n,0,30}]]  (* Harvey P. Dale, Apr 21 2011 *)

Formula

a(n) = Sum_{i=0..n} A001672(i).
a(n) = Sum_{i=0..n} floor(Pi^i).

A140471 Floored n-th power of Viswanath's constant.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 59, 67, 76, 86, 98, 111, 125, 142, 161, 182, 206, 233, 264, 299, 339, 384, 434, 492, 557, 630, 713, 808, 914, 1035, 1172, 1326, 1502, 1700, 1924
Offset: 0

Views

Author

Alonso del Arte, Jun 28 2008

Keywords

Comments

For sufficiently large terms of a random Fibonacci sequence, the powers of Viswanath's constant approximate the absolute value of the terms in such a sequence (with a few notable exceptions).

Examples

			a(7) = 2 because V^7 is approximately 2.381734947432 and floored that is 2.
		

Crossrefs

Cf. A014217, floored n-th power of the golden ratio; A000149, floored n-th power of e; A001672, floored n-th power of Pi.

Programs

  • Mathematica
    V = 1.1319882487943; Table[Floor[V^n], {n, 0, 49}]

Formula

a(n) = floor(v^n), where v = 1.1319882487943 as given by A078416.

Extensions

More terms from Alois P. Heinz, Mar 08 2020

A247168 Number of times n occurs in the sequence floor(log_Pi(i)) with i=1,2,3,... .

Original entry on oeis.org

6, 22, 66, 209, 655, 2059, 6468, 20321, 63839, 200556, 630065, 1979408, 6218494, 19535974, 61374075, 192812343, 605737840, 1902981546, 5978392847, 18781675046, 59004372349, 185367702702, 582349813020, 1829505894404, 5747562277559, 18056499427227
Offset: 1

Views

Author

Talha Ali, Nov 29 2014

Keywords

Crossrefs

Formula

a(n) = floor(Pi^(n+1)) - floor(Pi^(n)) = A001672(n+1) - A001672(n), n>=1.

A309946 a(n) = floor(Pi^n/Zeta(n)).

Original entry on oeis.org

0, 6, 25, 90, 295, 945, 2995, 9450, 29749, 93555, 294058, 924041, 2903320, 9121612, 28657269, 90030844, 282842403, 888579011, 2791558622, 8769948429, 27551618702, 86555983552, 271923674474, 854273468992, 2683779334331, 8431341566236, 26487840921750, 83214006759229, 261424512797515
Offset: 1

Views

Author

Seiichi Manyama, Aug 24 2019

Keywords

Examples

			Pi^12/Zeta(12) = 638512875/691 = 924041.78... So a(12) = 924041.
		

Crossrefs

Decimal expansion of Pi^k/Zeta(k): A308637 (k = 3), A309926 (k = 5), A309927 (k = 7), A309928 (k = 9), A309929 (k = 11).
Cf. A001672 (floor(Pi^n)), A002432, A046988, A100594.

Programs

  • Mathematica
    Table[Floor[Pi^n/Zeta[n]], {n, 20}] (* Alonso del Arte, Aug 24 2019 *)
  • PARI
    {a(n) = if(n==1, 0, n==4, 90, floor(Pi^n/zeta(n)))}

Formula

a(2*n) = A100594(n).
Previous Showing 21-24 of 24 results.