cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 144 results. Next

A318231 Number of inequivalent leaf-colorings of series-reduced rooted trees with n nodes.

Original entry on oeis.org

1, 0, 2, 3, 9, 23, 73, 229, 796, 2891, 11118, 44695, 187825, 820320, 3716501, 17413308, 84209071, 419461933, 2148673503, 11301526295, 60956491070, 336744177291, 1903317319015, 10995856040076, 64873456288903, 390544727861462, 2397255454976268, 14993279955728851
Offset: 1

Views

Author

Gus Wiseman, Aug 21 2018

Keywords

Comments

In a series-reduced rooted tree, every non-leaf node has at least two branches.

Examples

			Inequivalent representatives of the a(6) = 23 leaf-colorings:
  (11(11))  (1(111))  (11111)
  (11(12))  (1(112))  (11112)
  (11(22))  (1(122))  (11122)
  (11(23))  (1(123))  (11123)
  (12(11))  (1(222))  (11223)
  (12(12))  (1(223))  (11234)
  (12(13))  (1(234))  (12345)
  (12(33))
  (12(34))
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(concat(v[1..n-2], [0]))), n-1 )); x*Ser(v)}
    InequivalentColoringsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 11 2020

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 11 2020

A331679 Number of lone-child-avoiding locally disjoint rooted trees whose leaves are positive integers summing to n, with no two distinct leaves directly under the same vertex.

Original entry on oeis.org

1, 2, 3, 8, 16, 48, 116, 341, 928, 2753, 7996, 24254, 73325, 226471, 702122
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

A tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex. It is lone-child-avoiding if there are no unary branchings.

Examples

			The a(1) = 1 through a(5) = 16 trees:
  1  2     3        4           5
     (11)  (111)    (22)        (11111)
           (1(11))  (1111)      ((11)3)
                    (2(11))     (1(22))
                    (1(111))    (2(111))
                    (11(11))    (1(1111))
                    ((11)(11))  (11(111))
                    (1(1(11)))  (111(11))
                                (1(2(11)))
                                (2(1(11)))
                                (1(1(111)))
                                (1(11)(11))
                                (1(11(11)))
                                (11(1(11)))
                                (1((11)(11)))
                                (1(1(1(11))))
		

Crossrefs

The non-locally disjoint version is A141268.
Locally disjoint trees counted by vertices are A316473.
The case where all leaves are 1's is A316697.
Number of trees counted by A331678 with all atoms equal to 1.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.
Unlabeled lone-child-avoiding locally disjoint rooted trees are A331680.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    usot[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[usot/@ptn]],disjointQ[DeleteCases[#,_?AtomQ]]&&SameQ@@Select[#,AtomQ]&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n];
    Table[Length[usot[n]],{n,12}]

A331680 Number of lone-child-avoiding locally disjoint unlabeled rooted trees with n vertices.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 45, 72, 124, 201, 341, 561, 947, 1571, 2651, 4434, 7496, 12631, 21423, 36332, 61910, 105641, 180924, 310548, 534713, 923047
Offset: 1

Views

Author

Gus Wiseman, Jan 25 2020

Keywords

Comments

First differs from A320268 at a(11) = 45, A320268(11) = 44.
A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other unequal child of the same vertex. Lone-child-avoiding means there are no unary branchings.

Examples

			The a(1) = 1 through a(9) = 16 trees (empty column indicated by dot):
  o  .  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)    (oooooooo)
                     (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))   (o(oooooo))
                              (oo(oo))  (oo(ooo))   (oo(oooo))   (oo(ooooo))
                                        (ooo(oo))   (ooo(ooo))   (ooo(oooo))
                                        ((oo)(oo))  (oooo(oo))   (oooo(ooo))
                                        (o(o(oo)))  (o(o(ooo)))  (ooooo(oo))
                                                    (o(oo)(oo))  ((ooo)(ooo))
                                                    (o(oo(oo)))  (o(o(oooo)))
                                                    (oo(o(oo)))  (o(oo(ooo)))
                                                                 (o(ooo(oo)))
                                                                 (oo(o(ooo)))
                                                                 (oo(oo)(oo))
                                                                 (oo(oo(oo)))
                                                                 (ooo(o(oo)))
                                                                 (o((oo)(oo)))
                                                                 (o(o(o(oo))))
		

Crossrefs

The enriched version is A316696.
The Matula-Goebel numbers of these trees are A331871.
The non-locally disjoint version is A001678.
These trees counted by number of leaves are A316697.
The semi-lone-child-avoiding version is A331872.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    strut[n_]:=If[n==1,{{}},Select[Join@@Function[c,Union[Sort/@Tuples[strut/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]];
    Table[Length[strut[n]],{n,10}]

A331681 One, two, and all numbers of the form 2^k * prime(j) where k > 0 and j already belongs to the sequence.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 24, 26, 28, 32, 38, 48, 52, 56, 64, 74, 76, 86, 96, 104, 106, 112, 128, 148, 152, 172, 178, 192, 202, 208, 212, 214, 224, 256, 262, 296, 304, 326, 344, 356, 384, 404, 416, 424, 428, 446, 448, 478, 512, 524, 526, 592, 608, 622, 652
Offset: 1

Views

Author

Gus Wiseman, Jan 26 2020

Keywords

Comments

Also Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted semi-identity trees. A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. Locally disjoint means no branch of any vertex overlaps a different (unequal) branch of the same vertex. In a semi-identity tree, all non-leaf branches of any given vertex are distinct. Note that these conditions together imply that there is at most one non-leaf branch under any given vertex.
Also Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of its branches (of the root), which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees with at most one non-leaf branch under any given vertex, together with their Matula-Goebel numbers, begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  38: (o(ooo))
  48: (oooo(o))
  52: (oo(o(o)))
  56: (ooo(oo))
  64: (oooooo)
  74: (o(oo(o)))
  76: (oo(ooo))
  86: (o(o(oo)))
		

Crossrefs

The enumeration of these trees by nodes is A324969 (essentially A000045).
The enumeration of these trees by leaves appears to be A090129(n + 1).
The (non-semi) lone-child-avoiding version is A331683.
Matula-Goebel numbers of rooted semi-identity trees are A306202.
Lone-child-avoiding locally disjoint rooted trees by leaves are A316697.
The set S of numbers with at most one prime index in S is A331784.
Matula-Goebel numbers of locally disjoint rooted trees are A316495.

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {1,2}:
    with(queue):
    Q:= new(1,2):
    while not empty(Q) do
      r:= dequeue(Q);
      p:= ithprime(r);
      newS:= {seq(2^i*p,i=1..ilog2(N/p))} minus S;
      S:= S union newS;
      for s in newS do enqueue(Q,s) od:
    od:
    sort(convert(S,list)); # Robert Israel, Feb 05 2020
  • Mathematica
    uryQ[n_]:=n==1||MatchQ[FactorInteger[n],({{2,},{p,1}}/;uryQ[PrimePi[p]])|{{2,_}}];
    Select[Range[100],uryQ]

Formula

Intersection of A306202 (semi-identity), A316495 (locally disjoint), and A331935 (semi-lone-child-avoiding). - Gus Wiseman, Jun 09 2020

A331964 Number of semi-lone-child-avoiding rooted identity trees with n vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 44, 74, 123, 209, 353, 602, 1026, 1760, 3019, 5203, 8977, 15538, 26930, 46792, 81415, 141939, 247795, 433307, 758672, 1330219, 2335086, 4104064, 7220937, 12718694, 22424283, 39574443, 69903759, 123584852, 218668323
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf. It is an identity tree if the branches of any given vertex are all distinct.

Examples

			The a(9) = 2 through a(12) = 10 semi-lone-child-avoiding rooted identity trees:
  ((o)(o(o(o))))  (o(o)(o(o(o))))   ((o)(o(o)(o(o))))  (o(o)(o(o)(o(o))))
  (o((o)(o(o))))  (o(o(o)(o(o))))   ((o)(o(o(o(o)))))  (o(o)(o(o(o(o)))))
                  (o(o(o(o(o)))))   ((o(o))(o(o(o))))  (o(o(o))(o(o(o))))
                  ((o)((o)(o(o))))  (o((o)(o(o(o)))))  (o(o(o)(o(o(o)))))
                                    (o(o)((o)(o(o))))  (o(o(o(o)(o(o)))))
                                    (o(o((o)(o(o)))))  (o(o(o(o(o(o))))))
                                                       ((o)((o)(o(o(o)))))
                                                       ((o)(o((o)(o(o)))))
                                                       ((o(o))((o)(o(o))))
                                                       (o((o)((o)(o(o)))))
		

Crossrefs

The non-semi version is A000007.
Matula-Goebel numbers of these trees are A331963.
Rooted identity trees are A004111.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    ssei[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[ssei/@c]],UnsameQ@@#&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[ssei[n]],{n,15}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1,1]); for(n=2, n-1, v=concat(v, WeighT(v)[n] - v[n])); v} \\ Andrew Howroyd, Feb 09 2020

Extensions

Terms a(36) and beyond from Andrew Howroyd, Feb 09 2020

A330655 Number of balanced reduced multisystems of weight n whose atoms cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 12, 138, 2652, 78106, 3256404, 182463296, 13219108288, 1202200963522, 134070195402644, 17989233145940910, 2858771262108762492, 530972857546678902490, 113965195745030648131036, 27991663753030583516229824, 7800669355870672032684666900, 2448021231611414334414904013956
Offset: 0

Views

Author

Gus Wiseman, Dec 27 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements.

Examples

			The a(0) = 1 through a(3) = 12 multisystems:
  {}  {1}  {1,1}  {1,1,1}
           {1,2}  {1,1,2}
                  {1,2,2}
                  {1,2,3}
                  {{1},{1,1}}
                  {{1},{1,2}}
                  {{1},{2,2}}
                  {{1},{2,3}}
                  {{2},{1,1}}
                  {{2},{1,2}}
                  {{2},{1,3}}
                  {{3},{1,2}}
		

Crossrefs

Row sums of A330776.
The unlabeled version is A330474.
The strongly normal case is A330475.
The tree version is A330654.
The maximum-depth case is A330676.
The case where the atoms are all different is A005121.
The case where the atoms are all equal is A318813.
Multiset partitions of normal multisets are A255906.
Series-reduced rooted trees with normal leaves are A316651.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=vector(n), u=vector(n)); v[1]=k; for(n=1, #v, u += v*sum(j=n, #v, (-1)^(j-n)*binomial(j-1,n-1)); v=EulerT(v)); u}
    seq(n)={concat([1], sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k))))} \\ Andrew Howroyd, Dec 30 2019

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2019

A331872 Number of semi-lone-child-avoiding locally disjoint rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 19, 35, 59, 104, 179, 318, 556, 993, 1772, 3202, 5807, 10643, 19594, 36380, 67915
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.

Examples

			The a(1) = 1 through a(8) = 19 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)     (ooooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))    (o(ooooo))
                        (oo(o))   (oo(oo))   (oo(ooo))    (oo(oooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))    (ooo(ooo))
                                  (o(o)(o))  (oooo(o))    (oooo(oo))
                                  (o(o(o)))  ((oo)(oo))   (ooooo(o))
                                             (o(o(oo)))   (o(o(ooo)))
                                             (o(oo(o)))   (o(oo)(oo))
                                             (oo(o)(o))   (o(oo(oo)))
                                             (oo(o(o)))   (o(ooo(o)))
                                             ((o)(o)(o))  (oo(o(oo)))
                                             (o((o)(o)))  (oo(oo(o)))
                                                          (ooo(o)(o))
                                                          (ooo(o(o)))
                                                          (o(o)(o)(o))
                                                          (o(o(o)(o)))
                                                          (o(o(o(o))))
                                                          (oo((o)(o)))
                                                          ((o)((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A316473.
The non-semi version is A331680.
The Matula-Goebel numbers of these trees are A331873.
The same trees counted by number of leaves are A331874.
Not requiring local disjointness gives A331934.
Lone-child-avoiding rooted trees are A001678.

Programs

  • Mathematica
    disjointQ[u_]:=Apply[And,Outer[#1==#2||Intersection[#1,#2]=={}&,u,u,1],{0,1}];
    strutsemi[n_]:=If[n==1,{{}},If[n==2,{{{}}},Select[Join@@Function[c,Union[Sort/@Tuples[strutsemi/@c]]]/@Rest[IntegerPartitions[n-1]],disjointQ]]];
    Table[Length[strutsemi[n]],{n,8}]

A316653 Number of series-reduced rooted identity trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 1, 6, 58, 774, 13171, 272700, 6655962, 187172762, 5959665653, 211947272186, 8327259067439, 358211528524432, 16744766791743136, 845195057333580332, 45814333121920927067, 2654330505021077873594, 163687811930206581162063, 10705203621191765328300832
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.

Examples

			The a(3) = 6 trees are (1(12)), (2(12)), (1(23)), (2(13)), (3(12)), (123).
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    Table[Sum[Length[gro[m]],{m,allnorm[n]}],{n,5}]
  • PARI
    \\ here R(n,2) is A031148.
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    R(n,k)={my(v=[k]); for(n=2, n, v=concat(v, WeighT(concat(v,[0]))[n])); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 14 2018

A316656 Number of series-reduced rooted identity trees whose leaves span an initial interval of positive integers with multiplicities the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 4, 3, 1, 0, 9, 0, 1, 6, 26, 0, 36, 0, 16, 10, 1, 0, 92, 21, 1, 197, 25, 0, 100, 0, 236, 15, 1, 53, 474
Offset: 1

Views

Author

Gus Wiseman, Jul 09 2018

Keywords

Comments

A rooted tree is series-reduced if every non-leaf node has at least two branches. It is an identity tree if no branch appears multiple times under the same root.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of sets of trees begins:
   1:
   2: 1
   3:
   4: (12)
   5:
   6: (1(12))
   7:
   8: (1(23)), (2(13)), (3(12)), (123)
   9: (1(2(12))), (2(1(12))), (12(12))
  10: (1(1(12)))
  11:
  12: (1(1(23))), (1(2(13))), (1(3(12))), (1(123)), (2(1(13))), (3(1(12))), ((12)(13)), (12(13)), (13(12))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    gro[m_]:=If[Length[m]==1,m,Select[Union[Sort/@Join@@(Tuples[gro/@#]&/@Select[mps[m],Length[#]>1&])],UnsameQ@@#&]];
    Table[Length[gro[Flatten[MapIndexed[Table[#2,{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]],{n,30}]

Formula

a(prime(n>1)) = 0.
a(2^n) = A000311(n).

A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.

Original entry on oeis.org

1, 1, 2, 6, 43, 440, 7158, 151414
Offset: 0

Views

Author

Gus Wiseman, Dec 30 2019

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.

Examples

			The a(2) = 2 and a(3) = 6 multisystems:
  {1,1}  {{1},{1,1}}
  {1,2}  {{1},{1,2}}
         {{1},{2,3}}
         {{2},{1,1}}
         {{2},{1,3}}
         {{3},{1,2}}
The a(4) = 43 multisystems (commas and outer brackets elided):
  {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
  {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
                 {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
                 {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
                 {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
                                {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
                                {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
                                               {{2}}{{3}{11}} {{2}}{{3}{14}}
                                               {{23}}{{1}{1}} {{23}}{{1}{4}}
                                               {{3}}{{1}{12}} {{2}}{{4}{13}}
                                               {{3}}{{2}{11}} {{24}}{{1}{3}}
                                                              {{3}}{{1}{24}}
                                                              {{3}}{{2}{14}}
                                                              {{3}}{{4}{12}}
                                                              {{34}}{{1}{2}}
                                                              {{4}}{{1}{23}}
                                                              {{4}}{{2}{13}}
                                                              {{4}}{{3}{12}}
		

Crossrefs

The case with all atoms equal is A000111.
The case with all atoms different is A006472.
The version allowing all depths is A330475.
The unlabeled version is A330663.
The version where the atoms are the prime indices of n is A330665.
The (weakly) normal version is A330676.
The version where the degrees are the prime indices of n is A330728.
Multiset partitions of strongly normal multisets are A035310.
Series-reduced rooted trees with strongly normal leaves are A316652.

Programs

  • Mathematica
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				
Previous Showing 51-60 of 144 results. Next