cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A062263 Sixth (unsigned) column of triangle A062140 (generalized a=4 Laguerre).

Original entry on oeis.org

1, 60, 2310, 73920, 2162160, 60540480, 1664863200, 45664819200, 1261490630400, 35321737651200, 1006669523059200, 29284931579904000, 871226714502144000, 26538906072526848000, 828392996692445184000
Offset: 0

Views

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+5)*Binomial(n+9, 9)/Factorial(5): n in [0..20]]; // G. C. Greubel, May 12 2018
  • Mathematica
    Table[(n+5)!*Binomial[n+9,9]/5!, {n, 0, 20}] (* G. c. Greubel, May 12 2018 *)
  • PARI
    { f=24; for (n=0, 100, f*=n + 5; write("b062263.txt", n, " ", f*binomial(n + 9, 9)/120) ) } \\ Harry J. Smith, Aug 03 2009
    

Formula

E.g.f.: N(4;5, x)/(1-x)^15, with N(4;5, x) := Sum_{k=0..5} A062264(5, k)* x^k = 1 + 45*x + 360*x^2 + 840*x^3 + 630*x^4 + 226*x^5.
a(n) = A062140(n+5, 5).
a(n) = (n+5)!*binomial(n+9, 9)/5!.
If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-9) = (-1)^(n-1)*f(n,9,-6), (n>=9). - Milan Janjic, Mar 01 2009

A144893 Second column (m=2) of triangle A144891 (S1hat(5)).

Original entry on oeis.org

1, 5, 55, 360, 3630, 29820, 321300, 3225600, 38808000, 466300800, 6360379200, 89703936000, 1389213504000, 22565765376000, 394272204480000, 7248941973504000, 141496402037760000, 2901258659819520000, 62617333274496000000, 1414755114367795200000, 33446554797269053440000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144891, A001720 (first column), A144894 (third column).

Formula

a(n) = A144891(n+2,2), n>=0.

A144894 Third column (m=3) of triangle A144891 (S1hat(5)).

Original entry on oeis.org

1, 5, 55, 485, 4380, 39570, 421800, 4265100, 49455000, 594001800, 7784683200, 107814672000, 1624964544000, 25881953328000, 443107288512000, 8028628336512000, 154539996629760000, 3135393617489280000, 67045955961922560000, 1503619681171829760000, 35321502985569884160000
Offset: 0

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Crossrefs

Cf. A144891, A001720 (first column), A144893 (second column).

Formula

a(n) = A144891(n+3,3), n>=0.

A249619 Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A036038 and A078760 (the multinomial coefficients), but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A005651
Columns: 0: A000142 (factorials), 1: A001710, 2: A001715, 3: A133799, 4: A001720, 6: A001725, 10: A001730, 14: A049388
Last in row: end-2: A037955 after 1 term mismatch, end-1: A001405, end: A000012
The rightmost columns form the triangle A173333:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 1
3 6 3 1
4 24 12 4 1
5 120 60 20 5 1
6 720 360 120 30 6 1
7 5040 2520 840 210 42 7 1
8 40320 20160 6720 1680 336 56 8 1
A249620 shows the number of partitions of the same multisets. A187783 shows the number of permutations of special multisets.

Examples

			Triangle begins:
  n     0    1    2    3   4   5  6   7   8   9 10
m
0       1
1       1
2       2    1
3       6    3    1
4      24   12    4    6   1
5     120   60   20   30   5  10  1
6     720  360  120  180  30  60  6  90  15  20  1
		

Crossrefs

A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Examples

			The triangle begins:
     1;
     1,   1;
     3,   1,   1;
    13,   2,   2,  1;
    73,   6,   6,  3,  1;
   501,  24,  24, 12,  4, 1;
  4051, 120, 120, 60, 20, 5, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
Previous Showing 41-45 of 45 results.