cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A034905 Numbers whose square contains no loops in its digits (assumes 1, 2, 3, 5, 7 have no loops and 0, 4, 6, 8, 9 do).

Original entry on oeis.org

1, 5, 11, 15, 35, 39, 61, 85, 111, 115, 165, 189, 235, 239, 335, 365, 389, 415, 461, 485, 611, 715, 1061, 1085, 1165, 1235, 1239, 1489, 1585, 1665, 1765, 1885, 2261, 2285, 2715, 3335, 3365, 3489, 3511, 3515, 3635, 3711, 3915, 3939, 3965, 4139, 4211, 4715
Offset: 1

Views

Author

Keywords

Examples

			13^2 = 169 contains a 6 and a 9, so 13 does not belong to the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000],ContainsAll[{1,2,3,5,7},IntegerDigits[#^2]]&] (* Giorgos Kalogeropoulos, Jul 30 2021 *)

A190223 Numbers all of whose divisors are numbers whose decimal digits are noncomposite numbers (1,2,3,5,7).

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 15, 17, 21, 22, 23, 25, 31, 33, 35, 37, 51, 53, 55, 71, 73, 75, 77, 111, 113, 115, 121, 125, 127, 131, 137, 151, 155, 157, 173, 175, 211, 213, 217, 221, 223, 227, 231, 233, 251, 253, 257, 271, 275, 277, 311, 313, 317, 331, 337, 353
Offset: 1

Views

Author

Jaroslav Krizek, May 06 2011

Keywords

Comments

Subset of A001742.
All terms are obviously odd except for 2 and numbers of the form 2*A004022(k). - Harvey P. Dale, May 28 2014 (corrected by Iain Fox, Sep 03 2020)

Examples

			Number 115 is in sequence because all divisors of 115 (1, 5, 23, 115) are numbers whose decimal digits are noncomposite numbers (1,2,3,5,7).
		

Crossrefs

Supersequence: A001742.

Programs

  • Mathematica
    ncnQ[n_]:=Module[{digs=Union[Flatten[IntegerDigits/@Divisors[n]]]}, Complement[ digs,{1,2,3,5,7}]=={}]; Select[ Range[ 400],ncnQ] (* Harvey P. Dale, May 28 2014 *)
  • PARI
    is(k) = fordiv(k, d, if(setminus(vecsort(digits(d), , 8), [1, 2, 3, 5, 7]) != [], return(0))); 1 \\ Iain Fox, Dec 28 2017

Extensions

More terms from Harvey P. Dale, May 28 2014

A274765 Cyclops numbers with circular digits {0,6,8,9}.

Original entry on oeis.org

0, 606, 608, 609, 806, 808, 809, 906, 908, 909, 66066, 66068, 66069, 66086, 66088, 66089, 66096, 66098, 66099, 68066, 68068, 68069, 68086, 68088, 68089, 68096, 68098, 68099, 69066, 69068, 69069, 69086, 69088, 69089, 69096, 69098, 69099, 86066, 86068, 86069, 86086, 86088, 86089, 86096, 86098, 86099
Offset: 1

Views

Author

Kenny Lau, Jul 05 2016

Keywords

Comments

Intersection of A001743 and A134808.

Examples

			86069 is a member because it is cyclops (A134808) and each digit contains at least one loop (A001743).
		

Crossrefs

Programs

  • Mathematica
    cncdQ[n_]:=Module[{idn=IntegerDigits[n]},OddQ[Length[idn]]&&Count[idn,0] == 1&&idn[[(Length[idn]+1)/2]]==0&&SubsetQ[{0,6,8,9},idn]]; Select[ Range[ 0,90000],cncdQ] (* Harvey P. Dale, Jan 06 2022 *)
  • PARI
    is_a001633(n) = #Str(n)%2==1
    is_a001743(n) = #setintersect([1, 2, 3, 4, 5, 7], Set(digits(n)))==0
    is_a134808(n) = if(n==0, return(1), if(n < 10, return(0), my(d=digits(n), x=1, y=#d); while(x < #d, if(d[x]==0, break); x++); while(y > 1, if(d[y]==0, break); y--); if(x==y && x==ceil(#Str(n)/2), return(1), return(0))))
    is(n) = is_a001633(n) && is_a001743(n) && is_a134808(n) \\ Felix Fröhlich, Jul 05 2016
  • Python
    import sys
    f = open('b274765.txt', 'w')
    i = 1
    n = 0
    a = [""]
    while True:
        for x in a:
            for y in a:
                f.write(str(i)+" "+x+"0"+y+"\n")
                i += 1
                if i>20000:
                    f.close()
                    sys.exit()
        a = sum([[x+"6", x+"8", x+"9"] for x in a], [])
    # Kenny Lau, Jul 05 2016
    

A113623 7-smooth numbers containing only noncomposite digits (1,2,3,5,7).

Original entry on oeis.org

1, 2, 3, 5, 7, 12, 15, 21, 25, 27, 32, 35, 72, 75, 112, 125, 135, 175, 225, 252, 315, 375, 512, 525, 735, 1125, 1152, 1215, 1225, 1323, 1372, 1512, 1575, 1715, 2352, 3125, 3375, 13122, 13125, 15552, 25515, 25725, 31752, 35721, 55125, 77175, 111132
Offset: 1

Views

Author

Amarnath Murthy, Nov 10 2005

Keywords

Examples

			175 is a term since 175 = 5^2*7 and contains digits 1,5,7 none of which is composite. 175 is a member of A002473.
		

Crossrefs

Intersection of A001742 and A002473.
Cf. A113624.

Programs

  • Maple
    isA002473 := proc(n) local ifs ; if n <= 10 then true ; else ifs := ifactors(n)[2] ; if max( seq(op(1,i),i=ifs) ) <= 7 then true; else false ; fi ; fi ; end: isA113623 := proc(n) local digs ; if isA002473(n) then if convert(convert(n,base,10),set) minus {1,2,3,5,7} <> {} then false ; else true ; fi ; else false ; fi ; end: for n from 1 to 150000 do if isA113623(n) then printf("%d, ",n) ; fi ; od; # R. J. Mathar, Aug 28 2007

Extensions

More terms from R. J. Mathar, Aug 28 2007
Name corrected by Andrew Howroyd, Sep 17 2024

A136975 Numbers k such that k and k^2 use only the digits 1, 2, 3, 5 and 7.

Original entry on oeis.org

1, 5, 11, 15, 35, 111, 115, 235, 335, 715, 1235, 2715, 3335, 3511, 3515, 3711, 12335, 27115, 33335, 33515, 35711, 37115, 72335, 75711, 111235, 123335, 132335, 177515, 333335, 333515, 357115, 572115, 575515, 577515, 723335, 757115, 1233335, 1312335, 1323335, 3333335, 3333515, 3512511, 5227115, 5772115, 7233335, 11212115, 11277115, 11735515
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
Sequence is infinite; e.g., it contains 3...35 = (10^n-1)/3 + 2 for all n. - Robert Israel, Nov 24 2015
a(n) mod 100 can be only 11, 15 or 35 for n > 2. So if a(n) is a prime number, a(n) mod 100 = 11 for n > 2. Initial prime values of a(n) are 11, 3511 and 12375511 for n > 2. - Altug Alkan, Nov 25 2015

Examples

			757313127132715^2 = 573523172527531752317223271225.
		

Crossrefs

Programs

  • Maple
    f2:= proc(n) local L; convert(convert(n^2,base,10),set) intersect {4,6,8,9,0} = {} end proc:
    S:= {0}: A:= {}:
    for d from 1 to 8 do
      S:={seq(seq(10*s+j,j=[1,2,3,5,7]),s=S)};
      A:= select(f2,S) union A;
    od:
    sort(convert(A,list)); # Robert Israel, Nov 24 2015, corrected Sep 03 2020
  • Mathematica
    w = {1, 2, 3, 5, 7}; Select[Range[1, 10^7, 2], Union[IntegerDigits@ #, IntegerDigits[#^2], w] == w &] (* Michael De Vlieger, Nov 25 2015 *)
Previous Showing 11-15 of 15 results.