cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 544 results. Next

A251691 G.f.: G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 and F(x) is g.f. of A251690.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 36, 78, 169, 370, 813, 1793, 3971, 8817, 19631, 43804, 97938, 219357, 492072, 1105398, 2486320, 5598805, 12620832, 28477139, 64311189, 145354456, 328772330, 744155150, 1685434388, 3819629781, 8661130303, 19649713303, 44601771038, 101285994072, 230110466746
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2014

Keywords

Crossrefs

Formula

G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...
such that A(x) = G(F(x)), where G(x) = 1 + x*G(x)^3 is the g.f. of A001764:
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...
and F(x) is the g.f. of A251690:
F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 +...

A381911 Expansion of (1/x) * Series_Reversion( x * (1-x) / B(x) ), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 9, 55, 394, 3102, 25969, 226891, 2045342, 18883205, 177640462, 1696658418, 16408796013, 160366113609, 1581329919636, 15713344659359, 157187582466527, 1581676730708500, 15998326150898211, 162571286470135097, 1658893916098102321, 16991130941208846890
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + 3*k + 1, k] * Binomial[2*n - k, n - k]/(n + 3*k + 1), {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 22 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n-k, n-k)/(n+3*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n-k,n-k)/(n+3*k+1).

A382037 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^3) ), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 9, 160, 4325, 157896, 7280077, 406085632, 26599741065, 2001864880000, 170236619802161, 16144762562002944, 1689534516295056301, 193403842876754728960, 24040636567791329323125, 3224829927677539092791296, 464325325579881390473331473, 71428455280041816247241637888
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(3*n, k)/(n-k-1)!));

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x) * B(x*A(x))^3).
a(n) = (n-1)! * Sum_{k=0..n-1} (n+1)^(n-k-1) * binomial(3*n,k)/(n-k-1)! for n > 0.
E.g.f.: exp( Series_Reversion( x*exp(-x)/(1+x)^3 ) ).

A085358 Runs of zeros in binomial(3k,k)/(2k+1) (Mod 2): relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 170, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 341, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 42, 1, 2, 5, 1, 10, 1, 2, 85, 1, 2, 5, 1, 10, 1, 2, 21, 1, 2, 5, 1, 682, 1, 2, 5, 1
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

Has complementary parity to the infinite Fibonacci word: a(n) = 1 - A003849(n) (Mod 2). Records are given by A000975 and occur at Fibonacci numbers: {1,2,5,10,21,42,85,...} occur at {1,2,3,5,8,13,21,...}.

Crossrefs

Cf. A001764 (ternary trees), A003849 (infinite Fibonacci word), A000975 (records), A085357.

Formula

Construction: start with strings S(1)={1} and S(2)={1, 2}; for k>2, let L=largest number in current string S(k); to obtain S(k+1), append S(k-1) to the end of S(k) and then replace the last number in this resulting string with {2L+1 (k odd) or 2L (k even)}. String lengths have Fibonacci growth: {1}, {1, 2}, {1, 2, 5}, {1, 2, 5, 1, 10}, {1, 2, 5, 1, 10, 1, 2, 21}, ...

A120921 G.f. satisfies: A(x) = G(x) * A(x^4*G(x)^9), where G(x) is the g.f. of A001764: G(x) = 1 + x*G(x)^3.

Original entry on oeis.org

1, 1, 3, 12, 56, 283, 1503, 8262, 46591, 267984, 1565949, 9269559, 55465035, 334919996, 2038268620, 12489068727, 76980573203, 476994419698, 2969444848029, 18563305700106, 116485903375761, 733457500802353
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2006

Keywords

Comments

Self-convolution cube equals A120920, which equals column 0 of triangle A120919 (cascadence of (1+x)^3).

Crossrefs

Cf. A120919, A120920, A001764; A001764 (ternary trees).

Programs

  • PARI
    {a(n)=local(A=1+x,G=(1/x*serreverse(x/(1+x+x*O(x^n))^3))^(1/3)); for(i=0,n,A=G*subst(A,x,x^4*G^9 +x*O(x^n)));polcoeff(A,n,x)}

A153293 G.f.: A(x) = F(x*F(x)^3) = F(F(x)-1) where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 6, 42, 317, 2508, 20517, 172180, 1474689, 12843768, 113444721, 1014062898, 9158151426, 83449247979, 766340138037, 7085966319858, 65919413472834, 616559331247512, 5794778945023698, 54700034442193302, 518375457403431600
Offset: 0

Views

Author

Paul D. Hanna, Jan 14 2009

Keywords

Examples

			G.f.: A(x) = F(x*F(x)^3) = 1 + x + 6*x^2 + 42*x^3 + 317*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
		

Crossrefs

Programs

  • Maple
    S:= (1/2)*GAMMA(n+1/3)*GAMMA(n+2/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n*sqrt(3)/(Pi*GAMMA(2*n+2)):
    1, seq(simplify(S),n=1..40); # Robert Israel, Dec 26 2017
  • Mathematica
    F[x_] = 1 + InverseSeries[x/(1 + x)^3 + O[x]^21];
    CoefficientList[F[F[x] - 1], x] (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(3*(n-k)+3*k,n-k)*3*k/(3*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(3n,n-k)*k/n for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*F(x)^3*A(x)^3 where F(x) is the g.f. of A001764.
G.f. satisfies: A(x/G(x)) = F(x*G(x)^2) = F(G(x)-1) where G(x) = F(x/G(x)) is the g.f. of A000108 and F(x) is the g.f. of A001764.
a(n) = sqrt(3)*Gamma(n+2/3)*Gamma(n+1/3)*hypergeom([4/3, 5/3, -n+1], [5/2, 2*n+2], -27/4)*27^n/(2*Pi*(n+1)!) for n >= 1. - Robert Israel, Dec 26 2017

A153299 G.f.: A(x) = F(x*G(x)) where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).

Original entry on oeis.org

1, 1, 4, 20, 111, 657, 4067, 26028, 170913, 1145446, 7804797, 53911104, 376669462, 2657391772, 18904566514, 135460704648, 976795422828, 7082951967141, 51614974500605, 377798933519164, 2776363089297553, 20476554379564305
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)) = 1 + x + 4*x^2 + 20*x^3 + 111*x^4 +...
Related expansions.
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 +...
A(x)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 278*x^4 + 1696*x^5 +...
A(x)^3 = 1 + 3*x + 15*x^2 + 85*x^3 + 513*x^4 + 3225*x^5 +...
G(x)*A(x)^3 = 1 + 4*x + 20*x^2 + 111*x^3 + 657*x^4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(2*(n-k)+k,n-k)*k/(2*(n-k)+k)))}

Formula

a(n) = Sum_{k=0..n} C(3k+1,k)/(3k+1) * C(2n-k,n-k)*k/(2n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)*A(x)^3 where G(x) is the g.f. of A000108.
G.f. satisfies: A(x*F(x)) = F(x*F(x)^2) where F(x) is the g.f. of A001764.

A168479 G.f. satisfies: A(x/A(x)) = G(x)^3 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 3, 21, 217, 2895, 46479, 857670, 17619348, 394066449, 9445681950, 239946999264, 6407385578778, 178774882463450, 5188026867995184, 156036783823130184, 4850255971984578744, 155467140310522090338
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 21*x^2 + 217*x^3 + 2895*x^4 + 46479*x^5 +...
A(x/A(x)) = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...+ A001764(n+1)*x^n +...
		

Crossrefs

Cf. A168478, A168449 (variant), A001764.

Programs

  • PARI
    {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F^3, x, serreverse(x/(A+x*O(x^n))))); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1+A*serreverse(x/(A+x*O(x^n))))^3); polcoeff(A,n)}

Formula

G.f. satisfies: A(x) = [1 + A(x)*Series_Reversion(x/A(x))]^3.
G.f. satisfies: A( (x*(1-x)^2)/A(x*(1-x)^2) ) = 1/(1-x)^3.
G.f. satisfies: A( (x/(1+x)^3)/A(x/(1+x)^3) ) = (1 + x)^3.
Self-convolution cube of A168478.

A188912 Binomial convolution of the binomial coefficients bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 2, 8, 42, 260, 1816, 13962, 116094, 1029124, 9609144, 93569808, 942642696, 9763181946, 103455616400, 1117379189926, 12264816349938, 136501928050116, 1537591374945704, 17503603786398576, 201128739609458904, 2330480521265639136
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]/(2k+1)Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)/(2*k+1)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*binomial(3*k, k)*binomial(3*n-3*k, n-k)/((2*k+1)*(2*n-2*k+1)).
E.g.f.: F(1/3,2/3;1,3/2;27*x/4)^2, where F(a1,a2;b1,b2;z) is a hypergeometric series.
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: 8*n^2*(n+1)*(2*n+1)^2*(9*n^3-54*n^2+84*n-35)*a(n) = 24*n*(324*n^7-2187*n^6+4689*n^5-4185*n^4+1464*n^3+122*n^2-223*n+44)*a(n-1) - 18*(n-1)*(3645*n^7-30618*n^6+96066*n^5-144585*n^4+103662*n^3-21834*n^2-10860*n+4480)*a(n-2) + 2187*(n-2)^2*(n-1)*(3*n-7)*(3*n-5)*(9*n^3-27*n^2+3*n+4)*a(n-3).
a(n) ~ 3^(3*n + 1) / (Pi * n^3 * 2^(n + 1)). (End)

A188913 Binomial convolution of the binomial coefficients bin(3n,n) (A005809) and bin(3n,n)/(2n+1) (A001764).

Original entry on oeis.org

1, 4, 24, 168, 1300, 10896, 97734, 928752, 9262116, 96091440, 1029267888, 11311712352, 126921365298, 1448378629600, 16760687848890, 196237061599008, 2320532776851972, 27676644749022672, 332568471941572944, 4022574792189178080
Offset: 0

Views

Author

Emanuele Munarini, Apr 13 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k]Binomial[3k,k]Binomial[3n-3k,n-k]/(2n-2k+1), {k,0,n}], {n,0,22}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k,0,n),n,0,12);
    
  • PARI
    a(n) = sum(k=0,n,binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1));
    vector(66, n, a(n-1)) /* show terms */ /* Joerg Arndt, Apr 13 2011 */

Formula

a(n) = sum(binomial(n,k)*binomial(3*k,k)*binomial(3*n-3*k,n-k)/(2*n-2*k+1),k=0..n).
E.g.f.: F(1/3,2/3;1/2,1;27*x/4)*F(1/3,2/3;1,3/2;27*x/4), where F(a1,a2;b1,b2;z) is a hypergeometric series.
Recurrence: 8*n^2 * (2*n+1)^2 * (9*n^3 - 54*n^2 + 84*n - 35)*a(n) = 24*(324*n^7 - 2187*n^6 + 4689*n^5 - 4185*n^4 + 1464*n^3 + 122*n^2 - 223*n + 44)*a(n-1) - 18*(3645*n^7 - 30618*n^6 + 96066*n^5 - 144585*n^4 + 103662*n^3 - 21834*n^2 - 10860*n + 4480)*a(n-2) + 2187*(n-2)*(n-1)*(3*n-7)*(3*n-5)*(9*n^3 - 27*n^2 + 3*n + 4)*a(n-3). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 3^(3*n+1) / (Pi*n^2*2^(n+1)). - Vaclav Kotesovec, Feb 25 2014
Previous Showing 21-30 of 544 results. Next