A127974
Numerators in expansion of (1-x)^(-2/3).
Original entry on oeis.org
1, 2, 5, 40, 110, 308, 2618, 7480, 21505, 559130, 1621477, 4717024, 41273960, 120646960, 353323240, 3109244512, 9133405754, 26862958100, 711868389650, 2098138411600, 6189508314220, 54821359354520, 161972198092900
Offset: 0
-
Numerator[CoefficientList[Series[(1 - x)^(-2/3), {x, 0, 50}], x]] (* G. C. Greubel, May 07 2018 *)
A180955
Triangle read by rows T(n,k) = numerators of A180955/A180956.
Original entry on oeis.org
1, 1, 1, 3, 1, 1, 5, 3, 1, 1, 35, 5, 3, 1, 1, 63, 35, 5, 3, 1, 1, 231, 63, 35, 5, 3, 1, 1, 429, 231, 63, 35, 5, 3, 1, 1, 6435, 429, 231, 63, 35, 5, 3, 1, 1, 12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1, 46189, 12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1, 88179, 46189, 12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1
Offset: 0
Triangle starts:
1;
1, 1;
3, 1, 1;
5, 3, 1, 1;
35, 5, 3, 1, 1;
63, 35, 5, 3, 1, 1;
231, 63, 35, 5, 3, 1, 1;
429, 231, 63, 35, 5, 3, 1, 1;
6435, 429, 231, 63, 35, 5, 3, 1, 1;
12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1;
46189, 12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1;
88179, 46189, 12155, 6435, 429, 231, 63, 35, 5, 3, 1, 1;
-
A180955:= func< n,k | Numerator((n-k+1)*Catalan(n-k)/4^(n-k)) >;
[A180955(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2024
-
A180955[n_, k_]:= Numerator[Binomial[2*(n-k), n-k]/4^(n-k)];
Table[A180955[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 22 2024 *)
-
def A180955(n,k): return numerator(binomial(2*(n-k), n-k)/4^(n-k))
flatten([[A180955(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 22 2024
A180956
Triangle read by rows T(n,k) = denominators of A180955/A180956.
Original entry on oeis.org
1, 2, 1, 8, 2, 1, 16, 8, 2, 1, 128, 16, 8, 2, 1, 256, 128, 16, 8, 2, 1, 1024, 256, 128, 16, 8, 2, 1, 2048, 1024, 256, 128, 16, 8, 2, 1, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1, 262144, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1
Offset: 0
Triangle starts:
1;
2, 1;
8, 2, 1;
16, 8, 2, 1;
128, 16, 8, 2, 1;
256, 128, 16, 8, 2, 1;
1024, 256, 128, 16, 8, 2, 1;
2048, 1024, 256, 128, 16, 8, 2, 1;
32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
262144, 65536, 32768, 2048, 1024, 256, 128, 16, 8, 2, 1;
-
A180956:= func< n,k | Denominator((n-k+1)*Catalan(n-k)/4^(n-k)) >;
[A180956(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 22 2024
-
A180956[n_, k_]:= Denominator[Binomial[2*(n-k), n-k]/4^(n-k)];
Table[A180956[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Sep 23 2024 *)
-
def A180956(n,k): return denominator(binomial(2*(n-k), n-k)/4^(n-k))
flatten([[A180956(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 22 2024
Original entry on oeis.org
1, 2, 2, 8, 8, 8, 16, 16, 16, 16, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 2048, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 32768, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536
Offset: 0
1,
2, 2,
8, 8, 8,
16, 16, 16, 16.
-
Flatten[Table[Denominator[Binomial[2n, n]/4^n], {n, 0, 19}, {n + 1}]] (* Alonso del Arte, Jan 07 2013 *)
(* Checking with the antidiagonals *) diff = Table[ Differences[ CoefficientList[ Series[1/Sqrt[1 - x], {x, 0, 9}], x], n], {n, 0, 9}]; Table[ diff[[n-k+1,k]] // Denominator,{n,0,10},{k,1,n}] // Flatten (* Jean-François Alcover, Jan 07 2013 *)
Flatten[Table[2^IntegerExponent[(2*n)!, 2], {n, 0, 19}, {n + 1}]]; (* Jean-François Alcover, Mar 27 2013, after A005187 *)
A224270
Absolute values of the numerators of the third column of ( 0 followed by (interleave 0 , A001803(n))/A060818(n) ) and its successive differences.
Original entry on oeis.org
1, 1, 5, 11, 95, 203, 861, 1815, 30459, 63635, 264979, 550069, 4555915, 9412543, 38816525, 79898895, 2627302995, 5392044675, 22104436695, 45256266825, 370241638305, 756514878405, 3088866211275, 6300861570705, 102746354288175, 209286947903319
Offset: 0
a(n)=numerators of 0+1=1, 0+1/2=1/2, 1/4+3/8=5/8, 3/8+5/16=11/16, 15/32+35/128=95/128,... .
-
nmax = 25; t1 = Table[ Numerator[ (2*n+1)*(Binomial[2*n, n]/4^n)] / Denominator[ Binomial[2*n, n]/4^n], {n, 0, Ceiling[nmax/2]}]; t2 = Join[{0}, Table[ If[ OddQ[n], 0, t1[[n/2]] ], {n, 1, nmax+2}] ]; t3 = Table[ Differences[t2, n], {n, 0, nmax}]; t3[[All, 3]] // Numerator // Abs (* Jean-François Alcover, Apr 02 2013 *)
A269949
Triangle read by rows, T(n,k) = denominator(binomial(-1/2, n-k))*binomial(n-1/2, k-1/2), for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 3, 3, 1, 5, 15, 5, 1, 35, 35, 35, 7, 1, 63, 315, 105, 63, 9, 1, 231, 693, 1155, 231, 99, 11, 1, 429, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 12155, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1
Offset: 0
Triangle starts:
[ 1]
[ 1, 1]
[ 3, 3, 1]
[ 5, 15, 5, 1]
[ 35, 35, 35, 7, 1]
[ 63, 315, 105, 63, 9, 1]
[231, 693, 1155, 231, 99, 11, 1]
-
Table[Denominator[Binomial[-1/2, n - k]] Binomial[n - 1/2, k - 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 13 2017 *)
-
A269949 = lambda n,k: binomial(-1/2,n-k).denom()*binomial(n-1/2,k-1/2)
for n in range(8): print([A269949(n,k) for k in (0..n)])
A322756
Denominator of expected payoff in the "Guessing Card Colors" game with a 2n-card deck, using an optimal strategy.
Original entry on oeis.org
2, 6, 10, 70, 126, 462, 858, 12870, 24310, 92378, 176358, 1352078, 2600150, 10029150, 19389690, 601080390, 1166803110, 4537567650, 8836315950, 68923264410, 134564468610, 526024740930, 1029178840950, 16123801841550, 31602651609438, 123979633237026
Offset: 1
3/2, 17/6, 41/10, 373/70, 823/126, 3565/462, 7625/858, 129293/12870, 272171/24310, 1139735/92378, 2376047/176358, ...
- Thane Plambeck and others, Posting to Math Fun Mailing List, Dec 26 2018.
-
a(n) = denominator(n - 1/2 + 2^(2*n-1)/binomial(2*n,n)); \\ Michel Marcus, Dec 28 2018
-
from fractions import Fraction
from math import comb
def A322756(n): return (n-Fraction(1,2)+Fraction(1<<(m:=n<<1)-1,comb(m,n))).denominator # Chai Wah Wu, Feb 12 2023
A344402
a(n) = denominator(R(n,3)), where R(n,d) = (Product_{j prime to d} Pochhammer(j/d, n)) / n!.
Original entry on oeis.org
1, 9, 81, 2187, 19683, 177147, 4782969, 43046721, 387420489, 31381059609, 282429536481, 2541865828329, 68630377364883, 617673396283947, 5559060566555523, 150094635296999121, 1350851717672992089, 12157665459056928801, 984770902183611232881, 8862938119652501095929
Offset: 0
R(n, 3) =
A273194 / (this sequence).
-
coprimes := n -> select(j -> igcd(j, n) = 1, {$1..n}):
R := (n, d) -> mul(pochhammer(j/d, n), j in coprimes(d)) / n!:
seq(denom(R(n, 3)), n = 0..16);
A094083
Numerators of ratio of sides of n-th triple of rectangles of unit area sum around a triangle.
Original entry on oeis.org
1, 1, 1, 4, 9, 64, 25, 256, 1225, 16384, 3969, 65536, 53361, 1048576, 184041, 4194304, 41409225, 1073741824, 147744025, 4294967296, 2133423721, 68719476736, 7775536041, 274877906944, 457028729521, 17592186044416, 1690195005625
Offset: 1
a(5) = a(5-2)*((5-2)/(5-1))^2 = 1/4*(3/4)^2 = 9/64
-
a[n_]:=If[OddQ[n], ((n/2-1)!)^2/(Pi*((n/2-1/2)!)^2), Pi*((n/2-1)!)^2/(12*((n/2-1/2)!)^2)] a[n_]:=If[OddQ[n], (2^(1-n)*(n-2)!!^2)/((n-1)/2)!^2, (2^(n-2)*((n-2)/2)!^2)/(3*(n-1)!!^2)] a[n_]:=((12+Pi^2+E^(I*n*Pi)*(Pi^2-12))*((n/2-1)!)^2)/(24*Pi*((n/2-1/2)!)^2) (CoefficientList[Series[(I*x*(6+Sqrt[3]*Pi)-2*x*Sqrt[3]*Log[x+Sqrt[x^2-1]])/(6*Sqrt[x^2-1]), {x, 0, 20}], x])^2
A162444
Denominators of the BG1[ -5,n] coefficients of the BG1 matrix.
Original entry on oeis.org
1, 1, 3, 5, 35, 9, 231, 143, 6435, 12155, 3553, 88179, 96577, 1300075, 5014575, 102051, 100180065, 116680311, 2268783825, 210388475, 6892326441, 67282234305, 17534158031, 39583801575, 8061900920775, 169906729083
Offset: 1
The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -7,n] = (1-2*n+60*n^2-120*n^3)*4^(n-1)*(n-1)!^2/(2*n-2)!
A162443 are the numerators of the BG1[ -5, n] matrix coefficients.
Comments