A055584 Triangle of partial row sums (prs) of triangle A055252.
1, 5, 1, 19, 6, 1, 63, 25, 7, 1, 192, 88, 32, 8, 1, 552, 280, 120, 40, 9, 1, 1520, 832, 400, 160, 49, 10, 1, 4048, 2352, 1232, 560, 209, 59, 11, 1, 10496, 6400, 3584, 1792, 769, 268, 70, 12, 1, 26624, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 66304, 43520
Offset: 0
Examples
[0] 1 [1] 5, 1 [2] 19, 6, 1 [3] 63, 25, 7, 1 [4] 192, 88, 32, 8, 1 [5] 552, 280, 120, 40, 9, 1 [6] 1520, 832, 400, 160, 49, 10, 1 [7] 4048, 2352, 1232, 560, 209, 59, 11, 1 Fourth row polynomial (n=3): p(3, x)= 63 + 25*x + 7*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([4, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055252(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055252(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^3)/(1-2*x)^4)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([4, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
A207537 Triangle of coefficients of polynomials u(n,x) jointly generated with A207538; see Formula section.
1, 2, 1, 4, 3, 8, 8, 1, 16, 20, 5, 32, 48, 18, 1, 64, 112, 56, 7, 128, 256, 160, 32, 1, 256, 576, 432, 120, 9, 512, 1280, 1120, 400, 50, 1, 1024, 2816, 2816, 1232, 220, 11, 2048, 6144, 6912, 3584, 840, 72, 1, 4096, 13312, 16640, 9984, 2912, 364, 13
Offset: 1
Comments
Another version in A201701. - Philippe Deléham, Mar 03 2012
Subtriangle of the triangle given by (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012
Columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976. - Philippe Deléham, Mar 03 2012
Diagonal sums: A052980. - Philippe Deléham, Mar 03 2012
Examples
First seven rows: 1; 2, 1; 4, 3; 8, 8, 1; 16, 20, 5, 32, 48, 18, 1; 64, 112, 56, 7; From _Philippe Deléham_, Mar 03 2012: (Start) Triangle A201701 begins: 1; 1, 0; 2, 1, 0; 4, 3, 0, 0; 8, 8, 1, 0, 0; 16, 20, 5, 0, 0, 0; 32, 48, 18, 1, 0, 0, 0; 64, 112, 56, 7, 0, 0, 0, 0; ... (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] v[n_, x_] := u[n - 1, x] + v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207537, |A028297| *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A207538, |A133156| *) (* Prepending 1 and with offset 0: *) Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1]; Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
Formula
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x), v(n,x) = u(n-1,x) + v(n-1,x), where u(1,x)=1, v(1,x)=1. Also, A207537 = |A028297|.
T(n,k) = 2*T(n-1,k) + T(n-2,k-1). - Philippe Deléham, Mar 03 2012
G.f.: -(1+x*y)*x*y/(-1+2*x+x^2*y). - R. J. Mathar, Aug 11 2015
T(n, k) = [x^k] hypergeom([-n/2, -n/2 + 1/2], [1/2], x + 1) provided offset is set to 0 and 1 prepended. - Peter Luschny, Feb 03 2021
A209404 Negated coefficients of Chebyshev T polynomials: a(n) = -A053120(n+14, n), n >= 0.
1, 15, 128, 816, 4320, 20064, 84480, 329472, 1208064, 4209920, 14057472, 45260800, 141213696, 428654592, 1270087680, 3683254272, 10478223360, 29297934336, 80648077312, 218864025600, 586290298880, 1551944908800, 4063273943040
Offset: 0
Comments
The MAGMA program provided calculates the coefficients of order one Chebyshev polynomials, for any arbitrary level. For example, setting Rn to 0 produces A001792, 1 produces A001793, 2 produces A001794, 3 produces A006974, 4 produces A006975, and 5 produces A006976. This sequence is produced with an Rn of 6.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
Programs
-
GAP
List([0..30], n-> 2^(n-1)*(n+14)*Binomial(n+6,6)/7); # G. C. Greubel, Oct 18 2019
-
Magma
Rn:=6; [2^(n-1)/(Rn+1)*Binomial(n+Rn,Rn)*(n+(Rn+1)*2) : n in [0..22]];
-
Magma
R
:=PowerSeriesRing(Integers(), 23); Coefficients(R!( (1-x)/(1-2*x)^8 )); // Marius A. Burtea, Oct 17 2019 -
Maple
seq(2^(n-1)*(n+14)*binomial(n+6,6)/7, n=0..30); # G. C. Greubel, Oct 18 2019
-
Mathematica
CoefficientList[Series[(1-x)/(1-2*x)^8, {x,0,30}], x] (* or *) Table[2^(n-1)*Binomial[n+6,6]*(n+14)/7, {n,0,30}] (* G. C. Greubel, Jan 03 2018 *)
-
PARI
for(n=0,30, print1(2^(n-1)*binomial(n+6,6)*(n+14)/7, ", ")) \\ G. C. Greubel, Jan 03 2018
Formula
a(n) = 2^(n-1)*binomial(n+6, 6)*(n+14)/7 = -A053120(n+14, n), n >= 0. [See a comment in A053120 on subdiagonal sequences. - Wolfdieter Lang, Jan 03 2020]
G.f.: (1-x)/(1-2*x)^8. - Colin Barker, May 31 2013
E.g.f.: (1/315)*exp(2*x)*(315 + 4095*x + 11340*x^2 + 11550*x^3 + 5250*x^4 + 1134*x^5 + 112*x^6 + 4*x^7). - Stefano Spezia, Oct 17 2019
Extensions
Name made more specific by Wolfdieter Lang, Nov 25 2019
A081265 Triangle of coefficients of the polynomials a(n, x) = 2*a(n-1, x)+ x^2*a(n-2,x), n >= 1, a(0, x) = 1, a(1, x) = 1.
1, 1, 0, 2, 0, 1, 4, 0, 3, 0, 8, 0, 8, 0, 1, 16, 0, 20, 0, 5, 0, 32, 0, 48, 0, 18, 0, 1, 64, 0, 112, 0, 56, 0, 7, 0, 128, 0, 256, 0, 160, 0, 32, 0, 1, 256, 0, 576, 0, 432, 0, 120, 0, 9, 0, 512, 0, 1280, 0, 1120, 0, 400, 0, 50, 0, 1, 1024, 0, 2816, 0, 2816, 0, 1232, 0, 220
Offset: 0
Comments
Examples
Triangle rows are {1}, {1,0}, {2,0,1}, {4,0,3,0}, {8,0,8,0,1},.... [Corrected by _Philippe Deléham_, Dec 27 2007] See the unsigned example under A039991. - _Wolfdieter Lang_, Aug 06 2014
Formula
T(n,k) = [x^k] a(n,x), k = 0, 1, ..., n, with polynomial a(n,x) defined by the recurrence given as name. Its Binet-de Moivre form is a(n, x) = ((1+sqrt(x^2+1))^n + (1-sqrt(x^2+1))^n)/2.
O.g.f. for row polynomials a(n,x): (1-z)/(1 - 2*z - (x*z)^2). Compare with A039991.
Extensions
Edited. Name and formula clarified. G.f. of row polynomial, and crossref. A039991 added. - Wolfdieter Lang, Aug 06 2014
A136523 Triangle T(n,k) = A053120(n,k) + A053120(n-1,k), read by rows.
1, 1, 1, -1, 1, 2, -1, -3, 2, 4, 1, -3, -8, 4, 8, 1, 5, -8, -20, 8, 16, -1, 5, 18, -20, -48, 16, 32, -1, -7, 18, 56, -48, -112, 32, 64, 1, -7, -32, 56, 160, -112, -256, 64, 128, 1, 9, -32, -120, 160, 432, -256, -576, 128, 256, -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512
Offset: 0
Examples
Triangle begins as: 1; 1, 1; -1, 1, 2; -1, -3, 2, 4; 1, -3, -8, 4, 8; 1, 5, -8, -20, 8, 16; -1, 5, 18, -20, -48, 16, 32; -1, -7, 18, 56, -48, -112, 32, 64; 1, -7, -32, 56, 160, -112, -256, 64, 128; 1, 9, -32, -120, 160, 432, -256, -576, 128, 256; -1, 9, 50, -120, -400, 432, 1120, -576, -1280, 256, 512;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
function A053120(n,k) if ((n+k) mod 2) eq 1 then return 0; elif n eq 0 then return 1; else return (-1)^Floor((n-k)/2)*(n/(n+k))*Binomial(Floor((n+k)/2), k)*2^k; end if; end function; A136523:= func< n,k | A053120(n,k) + A053120(n-1,k) >; [A136523(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 26 2023
-
Mathematica
A053120[n_, k_]:= Coefficient[ChebyshevT[n,x], x, k]; T[n_, k_]:= T[n, k]= A053120[n,k] + A053120[n-1,k]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
def A053120(n,k): if (n+k)%2==1: return 0 elif n==0: return 1 else: return floor((-1)^((n-k)//2)*(n/(n+k))*binomial((n+k)//2, k)*2^k) def A136523(n,k): return A053120(n,k) + A053120(n-1,k) flatten([[A136523(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 26 2023
Formula
Sum_{k=0..n} T(n, k) = A040000(n).
From G. C. Greubel, Jul 26 2023: (Start)
T(n, 0) = A057077(n).
T(n, 1) = (-1)^floor((n-1)/2) * A109613(n-1).
T(n, 2) = (-1)^floor((n-2)/2) * A008794(n-1).
T(n, 3) = (-1)^floor((n+1)/2) * A000330(n-1).
T(n, n) = A011782(n).
T(n, n-1) = A011782(n-1).
T(n, n-2) = -A001792(n-2).
T(n, n-4) = A001793(n-3).
T(n, n-6) = -A001794(n-6).
Sum_{k=0..n} (-1)^k*T(n,k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n) + [n=1].
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = (-1)^floor(n/2)*A025192(floor(n/2)). (End)
Extensions
Edited by G. C. Greubel, Jul 26 2023
A304635 Triangle T(n,j) read by rows: the number of j-faces in the hypersimplicial decomposition of the unit cube of n dimensions.
1, 5, 2, 18, 14, 3, 56, 64, 27, 4, 160, 240, 150, 44, 5, 432, 800, 660, 288, 65, 6, 1120, 2464, 2520, 1456, 490, 90, 7, 2816, 7168, 8736, 6272, 2800, 768, 119, 8, 6912, 19968, 28224, 24192, 13440, 4896, 1134, 152, 9, 16640, 53760, 86400, 86016, 57120, 25920, 7980, 1600, 189, 10
Offset: 1
Examples
The triangle starts in row n>= for 1<=j<=n as: 1, 5,2, 18,14,3, 56,64,27,4, 160,240,150,44,5, 432,800,660,288,65,6, 1120,2464,2520,1456,490,90,7, 2816,7168,8736,6272,2800,768,119,8, 6912,19968,28224,24192,13440,4896,1134,152,9, 16640,53760,86400,86016,57120,25920,7980,1600,189,10,
Links
- T. Hibi, N. Li, H. Ohsugi, The Face Vector of a Half-Open Hypersimplex, J. Int. Seq. 18 (2015) 15.6.6
Crossrefs
Programs
-
Maple
A304635 := proc(n,j) j*2^(n-j-1)*(n+j+2)/(n+1)*binomial(n+1,j+1) ; end proc:
Formula
T(n,j) = j*2^(n-j-1)*(n+j+2)*binomial(n+,j+1)/(n+1).
A375550 Triangle read by rows: T(m, n, k) = binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1) for m = 4.
1, 6, 1, 25, 7, 1, 88, 32, 8, 1, 280, 120, 40, 9, 1, 832, 400, 160, 49, 10, 1, 2352, 1232, 560, 209, 59, 11, 1, 6400, 3584, 1792, 769, 268, 70, 12, 1, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1
Offset: 0
Comments
Triangle T(m,n,k) is a Riordan array of the form ((1-x)^(m-1)*(1-2x)^(-m-1), x/(1-x)), for m = 3. - Igor Victorovich Statsenko, Feb 08 2025
Examples
Triangle starts: [0] 1; [1] 6, 1; [2] 25, 7, 1; [3] 88, 32, 8, 1; [4] 280, 120, 40, 9, 1; [5] 832, 400, 160, 49, 10, 1; [6] 2352, 1232, 560, 209, 59, 11, 1; [7] 6400, 3584, 1792, 769, 268, 70, 12, 1; [8] 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1; [9] 43520, 26880, 15360, 7937, 3598, 1375, 420, 95, 14, 1; ... Seen as an array of the columns: [0] 1, 6, 25, 88, 280, 832, 2352, 6400, 16896, ... [1] 1, 7, 32, 120, 400, 1232, 3584, 9984, 26880, ... [2] 1, 8, 40, 160, 560, 1792, 5376, 15360, 42240, ... [3] 1, 9, 49, 209, 769, 2561, 7937, 23297, 65537, ... [4] 1, 10, 59, 268, 1037, 3598, 11535, 34832, 100369, ... [5] 1, 11, 70, 338, 1375, 4973, 16508, 51340, 151709, ... [6] 1, 12, 82, 420, 1795, 6768, 23276, 74616, 226325, ...
Crossrefs
Programs
-
Maple
T := (m, n, k) -> binomial(n + 1, n - k)*hypergeom([m, k - n], [k + 2], -1); for n from 0 to 9 do seq(simplify(T(4, n, k)), k = 0..n) od; # As a binomial sum: T := (m, n, k) -> add(binomial(m + j, m)*binomial(n + 1, n - (j + k)), j = 0..n-k): for n from 0 to 9 do [n], seq(T(3, n, k), k = 0..n) od; # Alternative, generating the array of the columns: cgf := k -> (1 - x)^(2 - k) / (1 - 2*x)^4: ser := (k, len) -> series(cgf(k), x, len + 2): Tcol := (k, len) -> seq(coeff(ser(k, len), x, j), j = 0..len): seq(lprint([k], Tcol(k, 8)), k = 0..6);
Formula
T(m, n, k) = Sum_{j=0..n-k} binomial(m + j, m)*binomial(n + 1, n - (j + k)) for m = 3.
G.f. of column k: (1 - x)^(2 - k) / (1 - 2*x)^4.
Comments