A296979
Expansion of e.g.f. arcsin(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 3, -12, 68, -480, 4144, -42112, 494360, -6581880, 98079696, -1617373296, 29245459176, -575367843960, 12235339942344, -279650131845120, 6836254328079936, -177979145883651648, 4916243253642325056, -143602294106947553280, 4422411460743707222784
Offset: 0
arcsin(log(1 + x)) = x^1/1! - x^2/2! + 3*x^3/3! - 12*x^4/4! + 68*x^5/5! - 480*x^6/6! + ...
Cf.
A001710,
A001818,
A003703,
A003708,
A009024,
A009454,
A009775,
A104150,
A189815,
A296980,
A296981,
A296982.
-
a:=series(arcsin(log(1+x)),x=0,22): seq(n!*coeff(a,x,n),n=0..21); # Paolo P. Lava, Mar 26 2019
-
nmax = 21; CoefficientList[Series[ArcSin[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 21; CoefficientList[Series[-I Log[I Log[1 + x] + Sqrt[1 - Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!
A296980
Expansion of e.g.f. arcsinh(log(1 + x)).
Original entry on oeis.org
0, 1, -1, 1, 0, -2, -30, 446, -3248, 12412, 16020, -211356, -10756944, 284038272, -3556910448, 19122463296, 135073768320, -1286054192304, -108801241372368, 3952903127312016, -65667347037774720, 339816855220730784, 8862271481944986336
Offset: 0
arcsinh(log(1 + x)) = x^1/1! - x^2/2! + x^3/3! - 2*x^5/5! - 30*x^6/6! + ...
Cf.
A001710,
A001818,
A003703,
A003708,
A009024,
A009454,
A009775,
A104150,
A296435,
A296979,
A296981,
A296982.
-
a:=series(arcsinh(log(1+x)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
-
nmax = 22; CoefficientList[Series[ArcSinh[Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 22; CoefficientList[Series[Log[Log[1 + x] + Sqrt[1 + Log[1 + x]^2]], {x, 0, nmax}], x] Range[0, nmax]!
A301942
Expansion of e.g.f. arcsin(x)/cos(x) (odd powers only).
Original entry on oeis.org
1, 4, 44, 1016, 42384, 2908544, 306305856, 46659144832, 9760451385600, 2683733034474496, 936308392553036800, 403127865773461755904, 209562975305232836300800, 129255511221696545852424192, 93252273300325219683758915584, 77766048645578119241905858314240
Offset: 0
arcsin(x)/cos(x) = x/1! + 4*x^3/3! + 44*x^5/5! + 1016*x^7/7! + 42384*x^9/9! + ...
Cf.
A000182,
A000364,
A000795,
A001818,
A002084,
A003701,
A003702,
A012782,
A296741,
A302444,
A302542,
A302543.
-
nmax = 16; Table[(CoefficientList[Series[ArcSin[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A302444
Expansion of e.g.f. arcsinh(x)/cos(x) (odd powers only).
Original entry on oeis.org
1, 2, 24, 216, 15936, -77056, 90991744, -8523712768, 2731708067840, -684815907467264, 268028469798256640, -114888252320482000896, 62022733722259702579200, -38635369828053720937463808, 28349537098304682205749968896, -23874826868622028919177351004160
Offset: 0
arcsinh(x)/cos(x) = x/1! + 2*x^3/3! + 24*x^5/5! + 216*x^7/7! + 15936*x^9/9! - 77056*x^11/11! + ...
Cf.
A000182,
A000364,
A000795,
A001818,
A002084,
A003701,
A003702,
A012821,
A296742,
A301942,
A302542,
A302543.
-
nmax = 16; Table[(CoefficientList[Series[ArcSinh[x]/Cos[x], {x, 0, 2 nmax + 1}], x] Range[0, 2 nmax + 1]!)[[n]], {n, 2, 2 nmax, 2}]
A302606
a(n) = n! * [x^n] exp(n*x)*arcsinh(x).
Original entry on oeis.org
0, 1, 4, 26, 240, 2884, 42660, 748544, 15185856, 349574544, 9000902500, 256293989984, 7996078704240, 271246034903232, 9939835626507332, 391303051339622400, 16469438021801262848, 737992773619777599744, 35077254665501330210628, 1762671472887447792620032
Offset: 0
Cf.
A001818,
A002866,
A291483,
A302583,
A302584,
A302585,
A302586,
A302587,
A302605,
A302608,
A302609.
-
Table[n! SeriesCoefficient[Exp[n x] ArcSinh[x], {x, 0, n}], {n, 0, 19}]
A325221
E.g.f.: C(x,k) = cn( i * Integral C(x,k) dx, k), where C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.
Original entry on oeis.org
1, 1, 0, 5, 4, 0, 61, 148, 16, 0, 1385, 6744, 2832, 64, 0, 50521, 410456, 383856, 47936, 256, 0, 2702765, 32947964, 54480944, 17142784, 780544, 1024, 0, 199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0, 19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0, 2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0
Offset: 0
E.g.f.: C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
such that C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
5, 4, 0;
61, 148, 16, 0;
1385, 6744, 2832, 64, 0;
50521, 410456, 383856, 47936, 256, 0;
2702765, 32947964, 54480944, 17142784, 780544, 1024, 0;
199360981, 3402510924, 8760740640, 5199585280, 686711040, 12555264, 4096, 0;
19391512145, 441239943664, 1632067372896, 1569971730560, 419867864320, 26090711040, 201199616, 16384, 0;
2404879675441, 70347660061552, 353538702361888, 502094919789184, 227204970315520, 30892394850304, 965223559168, 3220652032, 65536, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
-
N=10;
{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
{T(n,j) = (2*n)!*polcoeff(polcoeff(C, 2*n, x), 2*j, k)}
for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))
A325222
E.g.f.: D(x,k) = dn( i * Integral C(x,k) dx, k) such that C(x,k) = cn( i * Integral C(x,k) dx, k), where D(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n)*k^(2*j)/(2*n)!, as a triangle of coefficients T(n,j) read by rows.
Original entry on oeis.org
1, 0, 1, 0, 8, 1, 0, 136, 88, 1, 0, 3968, 6240, 816, 1, 0, 176896, 513536, 195216, 7376, 1, 0, 11184128, 51880064, 39572864, 5352544, 66424, 1, 0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1, 0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1, 0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1
Offset: 0
E.g.f.: D(x,k) = 1 + k^2*x^2/2! + (8*k^2 + 1*k^4)*x^4/4! + (136*k^2 + 88*k^4 + 1*k^6)*x^6/6! + (3968*k^2 + 6240*k^4 + 816*k^6 + 1*k^8)*x^8/8! + (176896*k^2 + 513536*k^4 + 195216*k^6 + 7376*k^8 + 1*k^10)*x^10/10! + (11184128*k^2 + 51880064*k^4 + 39572864*k^6 + 5352544*k^8 + 66424*k^10 + 1*k^12)*x^12/12! + (951878656*k^2 + 6453433344*k^4 + 8258202240*k^6 + 2458228480*k^8 + 139127640*k^10 + 597864*k^12 + 1*k^14)*x^14/14! + ...
such that D(x,k) = dn( i * Integral C(x,k) dx, k) where C(x,k) = cn( i * Integral C(x,k) dx, k).
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. D(x,k) begins:
1;
0, 1;
0, 8, 1;
0, 136, 88, 1;
0, 3968, 6240, 816, 1;
0, 176896, 513536, 195216, 7376, 1;
0, 11184128, 51880064, 39572864, 5352544, 66424, 1;
0, 951878656, 6453433344, 8258202240, 2458228480, 139127640, 597864, 1;
0, 104932671488, 978593947648, 1889844670464, 994697838080, 137220256000, 3535586112, 5380832, 1;
0, 14544442556416, 178568645312512, 485265505927168, 398800479698944, 102950036177920, 7233820923904, 88992306208, 48427552, 1; ...
RELATED SERIES.
The related series S(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
S(x,k) = x + (2 + 1*k^2)*x^3/3! + (16 + 28*k^2 + 1*k^4)*x^5/5! + (272 + 1032*k^2 + 270*k^4 + 1*k^6)*x^7/7! + (7936 + 52736*k^2 + 36096*k^4 + 2456*k^6 + 1*k^8)*x^9/9! + (353792 + 3646208*k^2 + 4766048*k^4 + 1035088*k^6 + 22138*k^8 + 1*k^10)*x^11/11! + (22368256 + 330545664*k^2 + 704357760*k^4 + 319830400*k^6 + 27426960*k^8 + 199284*k^10 + 1*k^12)*x^13/13! + (1903757312 + 38188155904*k^2 + 120536980224*k^4 + 93989648000*k^6 + 18598875760*k^8 + 702812568*k^10 + 1793606*k^12 + 1*k^14)*x^15/15! + ...
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (5 + 4*k^2)*x^4/4! + (61 + 148*k^2 + 16*k^4)*x^6/6! + (1385 + 6744*k^2 + 2832*k^4 + 64*k^6)*x^8/8! + (50521 + 410456*k^2 + 383856*k^4 + 47936*k^6 + 256*k^8)*x^10/10! + (2702765 + 32947964*k^2 + 54480944*k^4 + 17142784*k^6 + 780544*k^8 + 1024*k^10)*x^12/12! + (199360981 + 3402510924*k^2 + 8760740640*k^4 + 5199585280*k^6 + 686711040*k^8 + 12555264*k^10 + 4096*k^12)*x^14/14! + ...
which also satisfies C(x,k) = cn( i * Integral C(x,k) dx, k).
-
N=10;
{S=x; C=1; D=1; for(i=1, 2*N, S = intformal(C^2*D +O(x^(2*N+1))); C = 1 + intformal(S*C*D); D = 1 + k^2*intformal(S*C^2)); }
{T(n,j) = (2*n)!*polcoeff(polcoeff(D, 2*n, x), 2*j, k)}
for(n=0, N, for(j=0, n, print1( T(n,j), ", ")) ; print(""))
A353972
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arcsin(x).
Original entry on oeis.org
1, 0, 1, -4, 29, -124, 1583, -17088, 124553, -1152816, 20127867, -262838016, 3978820221, -48595514304, 914656587063, -24441484099584, 370244721585681, -5884988565575424, 162968423791332339, -3855257807841017856, 82014901819948738629, -1934570487417807744000, 58311771938510122952559
Offset: 1
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = Mod[n, 2] (n - 2)!!/(n (n - 1)!!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]
A354274
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + arcsinh(x).
Original entry on oeis.org
1, 0, -1, 4, -11, -4, -547, 7680, -7751, 81744, -3258663, -9474816, -390445563, 233029824, -964154427, 4193551958016, -18431412645519, 71090090006784, -6436900596281679, 17349989459410944, 834261829219880829, -241960391975347200, -1149793471388581053219
Offset: 1
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = {1, 0, -1, 0}[[Mod[n, 4, 1]]] (n - 2)!!/(n (n - 1)!!) - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]
A054479
Number of sets of cycle graphs of 2n nodes where the 2-colored edges alternate colors.
Original entry on oeis.org
1, 0, 6, 120, 6300, 514080, 62785800, 10676746080, 2413521910800, 700039083744000, 253445583029839200, 112033456760809584000, 59382041886244720843200, 37175286835046004765120000, 27139206193305890195912400000, 22852066417535931447551359680000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-2*j)*binomial(n-1, 2*j-1)*(2*j-1)!, j=2..n/2))
end:
a:= n-> b(2*n):
seq(a(n), n=0..15); # Alois P. Heinz, Mar 06 2023
-
Table[(n-1)*(2*n)!^2 * HypergeometricPFQ[{2-n},{3/2-n},-1/2] / (4^n*(n-1/2)*(n!)^2), {n, 0, 20}] (* Vaclav Kotesovec, Mar 29 2014 after Mark van Hoeij *)
-
x='x+O('x^66); v=Vec(serlaplace(1/(sqrt(exp(x^2)*(1-x^2))))); vector(#v\2,n,v[2*n-1]) \\ Joerg Arndt, May 13 2013
Comments