cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A363897 Expansion of Sum_{k>0} k * x^k / (1 - x^(5*k)).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 7, 8, 9, 10, 12, 14, 13, 14, 15, 17, 17, 21, 19, 20, 22, 24, 23, 28, 25, 27, 27, 28, 29, 35, 32, 34, 36, 34, 35, 43, 37, 38, 39, 40, 42, 51, 43, 48, 45, 47, 47, 59, 49, 50, 52, 54, 53, 63, 60, 57, 57, 58, 59, 70, 62, 64, 66, 68, 65, 84, 67, 68, 69, 70, 72, 86, 73, 74, 75, 77, 84, 94
Offset: 1

Views

Author

Seiichi Manyama, Jun 27 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # &, Mod[n/#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jun 27 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (n/d%5==1)*d);

Formula

a(n) = Sum_{d|n, n/d==1 mod 5} d.
G.f.: Sum_{k>0} x^(5*k-4) / (1 - x^(5*k-4))^2.

A363925 Expansion of Sum_{k>0} x^k / (1 - x^(5*k))^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 5, 1, 3, 1, 1, 6, 4, 1, 3, 1, 7, 1, 1, 1, 3, 8, 5, 4, 1, 1, 11, 1, 1, 1, 1, 10, 8, 1, 4, 1, 11, 1, 7, 1, 1, 12, 7, 1, 3, 4, 13, 1, 1, 1, 3, 14, 8, 6, 5, 1, 20, 1, 1, 1, 1, 16, 11, 1, 1, 1, 17, 4, 9, 1, 5, 18, 10, 1, 8, 1, 19, 1, 4, 1, 3, 20, 11
Offset: 1

Views

Author

Seiichi Manyama, Jun 28 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, # + 4 &, Mod[#, 5] == 1 &] / 5; Array[a, 100] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)*(d+4))/5;

Formula

a(n) = (1/5) * Sum_{d|n, d==1 mod 5} (d+4) = (4 * A001876(n) + A284097(n))/5.
G.f.: Sum_{k>0} k * x^(5*k-4) / (1 - x^(5*k-4)).

A218444 a(n) = Sum_{k>=0} floor(n/(5*k + 1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 15, 16, 17, 18, 20, 21, 23, 24, 25, 27, 29, 30, 32, 33, 35, 36, 37, 38, 40, 42, 44, 46, 47, 48, 51, 52, 53, 54, 55, 57, 60, 61, 63, 64, 66, 67, 70, 71, 72, 74, 76, 77, 79, 81, 83, 84, 85, 86, 88, 90, 92, 94, 96, 97, 101, 102, 103, 104, 105
Offset: 0

Views

Author

Benoit Cloitre, Oct 28 2012

Keywords

Crossrefs

Partial sums of A001876.

Programs

  • Mathematica
    a[n_] := Sum[ Floor[n/(5*k+1)], {k, 0, Ceiling[n/5]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    A218444[n]:=sum(floor(n/(5*k+1)),k,0,n)$
    makelist(A218444[n],n,0,80); /* Martin Ettl, Oct 29 2012 */
  • PARI
    a(n)=sum(k=0,n,(n\(5*k+1)))
    

Formula

a(n) = Sum_{k>=0} floor(n/(5*k + 1)).
a(n) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,5) - (1 - gamma)/5 = A256779 - (1 - A001620)/5 = 0.651363... (Smith and Subbarao, 1981). - Amiram Eldar, Apr 20 2025

A364043 Expansion of Sum_{k>0} x^k / (1 + x^(5*k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, -1, 1, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 2, -1, 1, 1, 1, 0, 2, -1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, -2, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^# &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%5==1)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-4) / (1 - x^(5*k-4)).
a(n) = -Sum_{d|n, d==1 (mod 5)} (-1)^d.

A364388 Number of divisors of n of the form 5*k+1 that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{1}, Mod[#, 5]] &)], {n, 100}]
    nmax = 100; CoefficientList[Series[Sum[x^(5 k + 1)^2/(1 - x^(5 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} x^(5*k+1)^2 / (1 - x^(5*k+1)).

A364586 a(n) is the least number with exactly n divisors of the form 5*k+1.

Original entry on oeis.org

1, 6, 36, 66, 252, 336, 672, 1008, 3528, 2016, 4032, 3696, 9072, 7392, 13104, 11088, 36288, 38304, 26208, 22176, 68544, 44352, 91728, 66528, 154224, 99792, 209664, 96096, 301392, 144144, 222768, 188496, 487872, 399168, 471744, 421344, 1079568, 288288, 1097712, 432432
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, (d%5)==1) != n, k++); k; \\ Michel Marcus, Jul 29 2023
    
  • PARI
    list(nmax) = {my(v = vector(nmax), c = 0, k = 1, i); while(c < nmax, i = sumdiv(k, d, d % 5 == 1); if(i <= nmax && v[i] == 0, c++; v[i] = k); k++); v;} \\ Amiram Eldar, Jan 28 2025

A373335 Expansion of Sum_{k>=1} x^k / (1 + x^k + x^(2*k) + x^(3*k) + x^(4*k)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 2, 0, 1, -1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, -1, 1, 1, 2, 0, 2, -1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 2, 0, -1, 1, -1, 2, 0, 1, -1, 1, 1, 0, 2, 1, 1, 1, 0, 1, -1, 0, 1, 0, 0, 1, 1, 1, 0, 2, -1, 1, 1, 0, -1, 2, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jun 01 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=110, x='x+O('x^N)); Vec(sum(k=1, N, x^k*(1-x^k)/(1-x^(5*k))))
    
  • PARI
    a(n) = sumdiv(n, d, (d%5==1)-(d%5==2));

Formula

G.f.: Sum_{k>=1} x^k * (1 - x^k) / (1 - x^(5*k)).
a(n) = A001876(n) - A001877(n).
Previous Showing 11-17 of 17 results.