cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A334823 Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).

Original entry on oeis.org

1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0

Views

Author

G. C. Greubel, May 12 2020, following a suggestion from Michel Marcus

Keywords

Comments

Lambert's numerator polynomials related to convergents of tan(x), g(n, x), are given in A334824.

Examples

			Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
        1;
        1, 0;
        3, 0,      -1;
       15, 0,      -6, 0;
      105, 0,     -45, 0,     1;
      945, 0,    -420, 0,    15, 0;
    10395, 0,   -4725, 0,   210, 0,   -1;
   135135, 0,  -62370, 0,  3150, 0,  -28, 0;
  2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
		

Crossrefs

Columns k: A001147 (k=0), A001879 (k=2), A001880 (k=4), A038121 (k=6).

Programs

  • Magma
    C := ComplexField();
    T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
    [T(n,k): k in [0..n], n in [0..10]];
    
  • Maple
    T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
    seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
  • Mathematica
    (* First program *)
    y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
    f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
    Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
    (* Second program *)
    Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
  • Sage
    [[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]

Formula

Equals the coefficients of the polynomials, f(n, x), defined by: (Start)
f(n, x) = Sum_{k=0..floor(n/2)} ((-1)^k*(2*n-2*k)!/((2*k)!*(n-2*k)!))*(x/2)^(n-2*k).
f(n, x) = ((2*n)!/n!)*(x/2)^n*Hypergeometric2F3(-n/2, (1-n)/2; 1/2, -n, -n+1/2; -1/x^2).
f(n, x) = ((-i)^n/2)*(y(n, i*x) + (-1)^n*y(n, -i*x)), where y(n, x) are the Bessel Polynomials.
f(n, x) = (2*n-1)*x*f(n-1, x) - f(n-2, x).
E.g.f. of f(n, x): cos((1 - sqrt(1-2*x*t))/2)/sqrt(1-2*x*t).
f(n, 1) = (-1)^n*f(n, -1) = A053983(n) = (-1)^(n+1)*A053984(-n-1) = (-1)^(n+1) * g(-n-1, 1).
f(n, 2) = (-1)^n*f(n, -2) = A053988(n+1). (End)
As a number triangle:
T(n, k) = i^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), where i = sqrt(-1).
T(n, 0) = A001147(n).

A350464 Table read by rows. Interpolating the swinging factorial (A056040) and the double factorial (A001147).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 2, 15, 15, 0, 6, 91, 210, 105, 0, 6, 690, 2835, 3150, 945, 0, 30, 5214, 42405, 79695, 51975, 10395, 0, 20, 44772, 666666, 2057055, 2207205, 945945, 135135, 0, 140, 384756, 11274900, 54879825, 90090000, 62432370, 18918900, 2027025
Offset: 0

Author

Peter Luschny, Mar 13 2022

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0,  1;
[2] 0,  1,   3;
[3] 0,  2,   15,     15;
[4] 0,  6,   91,     210,     105;
[5] 0,  6,   690,    2835,    3150,     945;
[6] 0,  30,  5214,   42405,   79695,    51975,    10395;
[7] 0,  20,  44772,  666666,  2057055,  2207205,  945945,  135135;
		

Crossrefs

Cf. A350465 (row sums), A350466 (alternating row sums).

Programs

  • Mathematica
    Swing[n_] := n! / Floor[n/2]!^2;
    Z[n_] := Flatten[Table[{0, Swing[j]}, {j, 0, n}]];
    T[n_, k_] := BellY[2 n, k, Z[n - k]];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten

Formula

The partial Bell polynomials Y_{2*n, k}(Z) applied to the list Z of the aerated swinging factorials (A056040).
Previous Showing 11-12 of 12 results.