A122801
Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.
Original entry on oeis.org
1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
Offset: 0
-
{ A122801(n) = binomial(2*n-1,n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }
A122802
Number of labeled bipartite graphs on n vertices with no isolated vertices.
Original entry on oeis.org
1, 0, 1, 6, 29, 510, 5032, 161406, 3294405, 194342910, 7934652356, 881008805886, 71275547085536, 15178191426486270, 2434250064518832302, 1008694542117649154046, 321680912414994434144165, 262063364967549826752315390, 166681427053102507699172431372
Offset: 0
-
a(n)={sum(k=0, n, binomial(n, k)*(2^k-2)^(n-k)) - if(n%2==0&&n>0, binomial(n-1, n/2)*sum(k=0, n/2, binomial(n/2, k)*(-1)^k*(2^(n/2-k)-1)^(n/2)))} \\ Andrew Howroyd, Nov 07 2019
A360718
Number of idempotent Boolean relation matrices on [n] that have no proper power primitive.
Original entry on oeis.org
1, 2, 9, 52, 459, 5526, 91161, 2039024, 62264215, 2618031658, 153147765333, 12544274587956, 1443661355799075, 233590364506712318, 53152637809972391281, 17010099259539378971368, 7660283773351147860024879, 4856904906875123474086041426
Offset: 0
-
nn = 17; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}]; c[x_] := Log[A[x]] - x; Range[0, nn]! CoefficientList[Series[2 (Exp[x D[c[x], x]/2] - 1) Exp[c[x]] Exp[x] + Exp[c[x]] D[x Exp[x], x], {x, 0, nn}], x]
Original entry on oeis.org
1, 2, 5, 18, 105, 946, 12589, 240482, 6526289, 250119330, 13512676053, 1027978959346, 110155994874553, 16631509898085074, 3540687511804739837, 1063409634646294541250, 450894476653951603096737
Offset: 0
A370208
Triangular array read by rows. T(n,k) is the number of idempotent binary relations on [n] having no proper power primitive (A360718) with exactly k irreflexive points.
Original entry on oeis.org
1, 1, 1, 3, 6, 13, 39, 87, 348, 24, 841, 4205, 480, 11643, 69858, 9420, 240, 227893, 1595251, 206640, 9240, 6285807, 50286456, 5389552, 299040, 3360, 243593041, 2192337369, 172041408, 9848160, 211680
Offset: 0
Triangle begins
1;
1, 1;
3, 6;
13, 39;
87, 348, 24;
841, 4205, 480;
11643, 69858, 9420, 240;
227893, 1595251, 206640, 9240;
...
-
nn = 9; A[x_] := Sum[x^n/n! Exp[(2^n - 1) x], {n, 0, nn}];
c[x_] := Log[A[x]] - x; Map[Select[#, # > 0 &] &,
Range[0, nn]! CoefficientList[
Series[2 (Exp[ y x D[c[ x], x]/2] - 1) Exp[c[x]] Exp[ x] +
Exp[c[ x]] (y x Exp[ x] + Exp[ x]), {x, 0, nn}], {x, y}]]
Comments