cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A058222 Tree of tournament sequences read across rows.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 6, 5, 6, 7, 8, 5, 6, 7, 8, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 15, 16, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 12, 8, 9, 10, 11, 12, 13, 14, 9, 10, 11, 12, 13, 14, 15, 16, 7, 8, 9
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2000

Keywords

Examples

			Irregular triangle begins:
  1;
  2;
  3,4;
  4,5,6,5,6,7,8;
  ...
		

Crossrefs

A008934 gives number of children at level n. Cf. A058223.
Cf. A002083.

Formula

Top node is 1; each node k has children labeled k+1, k+2, ..., 2k at next level.

A062178 a(n+1) = 2a(n)-a([n/2]) starting with a(0)=0 and a(1)=1.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 14, 25, 47, 89, 173, 338, 668, 1322, 2630, 5235, 10445, 20843, 41639, 83189, 166289, 332405, 664637, 1328936, 2657534, 5314400, 10628132, 21254942, 42508562, 85014494, 170026358, 340047481, 680089727, 1360169009, 2720327573
Offset: 0

Views

Author

Henry Bottomley, Jun 12 2001

Keywords

Comments

As partial sum of Narayana-Zidek-Capell numbers A002083, this is the number of words beginning with 1, with sum of integers <=n, in the sequence 1, 11, 111, 112, 1111, 1112, 1113, 1121, 1122, 1123, 1124, 11111, 11112, 11113, 11114, 11121, 11122, 11123, 11124, 11125, 11131, 11132, 11133, 11134, 11135, 11136, where any positive integer, in any word, is <= the sum of the preceding integers.
The subsequence of primes in this partial sum begins: 2, 3, 5, 47, 89, 173, 166289. [From Jonathan Vos Post, Feb 17 2010]
For n > 0: a(n) = A005255(n-1) + 1. - Reinhard Zumkeller, Nov 18 2012

Examples

			a(7)=2a(6)-a(3)=2*14-3=25. a(8)=2a(7)-a(3)=2*25-3=47. a(9)=2a(8)-a(4)=2*47-5=89.
		

Programs

  • Haskell
    a062178 n = a062178_list !! (n-1)
    a062178_list = scanl (+) 0 a002083_list
    -- Reinhard Zumkeller, Nov 18 2012

Formula

a(n) =a(n-1)+A002083(n).

A155092 Matrix inverse of A155091.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 1, 6, 6, 4, 2, 1, 1, 11, 11, 7, 4, 2, 1, 1, 22, 22, 14, 8, 4, 2, 1, 1, 42, 42, 27, 15, 8, 4, 2, 1, 1, 84, 84, 54, 30, 16, 8, 4, 2, 1, 1, 165, 165, 106, 59, 31, 16, 8, 4, 2, 1, 1, 330, 330, 212, 118, 62, 32, 16, 8, 4, 2, 1, 1, 654, 654, 420, 234, 123, 63
Offset: 1

Views

Author

Mats Granvik, Jan 20 2009

Keywords

Comments

First column is A002083. Rows sums are A045690.
Eigentriangle of A101688. - Paul Barry, Mar 01 2011

Examples

			Table begins:
1,
1,1,
1,1,1,
2,2,1,1,
3,3,2,1,1,
6,6,4,2,1,1,
11,11,7,4,2,1,1,
22,22,14,8,4,2,1,1,
42,42,27,15,8,4,2,1,1,
84,84,54,30,16,8,4,2,1,1,
		

Crossrefs

A174868 Partial sums of Stern's diatomic series A002487.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344, 353, 358, 364, 365, 372, 378, 389, 394, 408, 417, 430, 434, 449, 460, 478, 485, 502, 512, 525, 528, 542, 553, 572, 580, 601, 614, 632, 637, 654, 666, 685
Offset: 0

Views

Author

Jonathan Vos Post, Dec 01 2010

Keywords

Comments

After the initial 0, identical to A007729.

Examples

			a(16) = 0 + 1 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 4 + 3 + 5 + 2 + 5 + 3 + 4 + 1 = 41.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 2*a[n/2] + a[n/2 - 1], 2*a[(n - 1)/2] + a[(n + 1)/2]]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, May 18 2023 *)
  • Python
    from itertools import accumulate, count, islice
    from functools import reduce
    def A174868_gen(): # generator of terms
        return accumulate((sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1)),initial=0)
    A174868_list = list(islice(A174868_gen(),30)) # Chai Wah Wu, May 07 2023

Formula

a(n) = Sum_{i=0..n} A002487(i).
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
a(2k) = 2*a(k) + a(k-1); a(2k+1) = 2*a(k) + a(k+1). - Michael J. Collins, Dec 25 2018
a(n) = n^log_2(3) + Psi_D(log_2(n)) + O(n^log_2(phi)), where phi is the golden ratio (A001622) and Psi_D is a 1-periodic continuous function which is Hölder continuous with any exponent smaller than log_2(3/phi) (Heuberger et al., 2022). - Amiram Eldar, May 18 2023

A005254 Number of weighted voting procedures.

Original entry on oeis.org

1, 3, 9, 21, 51, 117, 271, 607, 1363, 3013, 6643, 14491, 31495, 67965, 146115, 312483, 666015, 1413915, 2992815, 6315135, 13292007, 27906585, 58464339, 122229123, 255072423, 531369483, 1105217223, 2295383319, 4760727375
Offset: 1

Views

Author

Keywords

References

  • M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 122-123.
  • T. V. Narayana, Recent progress and unsolved problems in dominance theory, pp. 68-78 of Combinatorial mathematics (Canberra 1977), Lect. Notes Math. Vol. 686, 1978.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Solution to Board of Directors Problem, J. Rec. Math., 9 (No. 3, 1977), 240.

Crossrefs

Row sums of A037254.

Programs

  • Haskell
    a005254 = sum . a037254_row  -- Reinhard Zumkeller, Nov 18 2012
  • Mathematica
    a[1, 1] = 1; a[n_, 1] := a[n, 1] = a[n - 1, Floor[(n + 1)/2]]; a[n_, k_ /; k > 1] := a[n, k] = a[n, 1] + a[n - 1, k - 1]; A005254 = Table[ Sum[ a[n, k], {k, 1, n}], {n, 1, 29}] (* Jean-François Alcover, Apr 03 2012, after recurrence of A037254 *)

Extensions

More terms from James Sellers, Feb 04 2000

A005256 Number of weighted voting procedures.

Original entry on oeis.org

1, 3, 6, 12, 23, 45, 87, 171, 336, 666, 1320, 2628, 5233, 10443, 20841, 41637, 83187, 166287, 332403, 664635, 1328934, 2657532, 5314398, 10628130, 21254940, 42508560, 85014492, 170026356, 340047479, 680089725, 1360169007, 2720327571
Offset: 1

Views

Author

Keywords

References

  • T. V. Narayana, Recent progress and unsolved problems in dominance theory, pp. 68-78 of Combinatorial mathematics (Canberra 1977), Lect. Notes Math. Vol. 686, 1978.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Haskell
    a005256 n = a005256_list !! (n-1)
    a005256_list = map (subtract 2) $ drop 3 a062178_list
    -- Reinhard Zumkeller, Nov 18 2012
  • Mathematica
    a[1] = 1; a[2] = 3; a[n_ /; n > 2] := a[n] = 2*a[n-1] - a[Floor[(n-3)/2]]; a[] = 0; Table[a[n], {n, 1, 32}] (* _Jean-François Alcover, Jul 30 2013, after Herman Jamke *)
  • PARI
    a(n)=if(n<3, (n>0)+2*(n>1), 2*a(n-1)-a((n-3)\2)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
    

Formula

a(n+1) = 2*a(n) - a(floor((n-2)/2)) starting with a(1)=1 and a(2)=3 (a(n)=0 if n<1). Also a(n) = A062178(n+2) - 2. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008

A043327 a(0)=1; a(1)=1; a(n)= a(n-1) + floor( sqrt(a(n-1)*a(n-2))+ sqrt(a(n-3)*a(n-4))+ ... ).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 43, 85, 166, 327, 641, 1259, 2471, 4853, 9528, 18710, 36737, 72137, 141643, 278125, 546112, 1072322, 2105559, 4134379, 8118070, 15940263, 31299549, 61458328, 120676683, 236955071, 465273846, 913589879, 1793882179
Offset: 0

Views

Author

Olivier Gérard, Jul 18 2001

Keywords

Comments

Nonlinear recurrence similar to that for Narayana numbers.

Crossrefs

Programs

  • Mathematica
    a[ 0 ]=0; a[ 1 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+ Floor[ Plus@@Map[ Sqrt[ Times@@# ]&, Partition[ Reverse[ Array[ a, n, 0 ] ], 2 ] ] ]

A043328 a(0)=1; a(1)=1; a(n)= a(n-1) + floor(sqrt(a(n-1)*a(n-2))) + floor(sqrt(a(n-3)*a(n-4))) + ....

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 22, 42, 83, 162, 318, 623, 1224, 2402, 4717, 9261, 18185, 35706, 70111, 137665, 270313, 530772, 1042200, 2046413, 4018242, 7890029, 15492492, 30420327, 59731927, 117286804, 230298862, 452204027, 887926594, 1743490958
Offset: 0

Views

Author

Olivier Gérard, Jul 18 2001

Keywords

Comments

Nonlinear recurrence similar to that for Narayana numbers.

Crossrefs

Programs

  • Mathematica
    a[ 0 ]=0; a[ 1 ]=1; a[ 2 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+ Plus@@Map[ Floor[ Sqrt[ Times@@# ] ]&, Partition[ Reverse[ Array[ a, n, 0 ] ], 2 ] ]

A242729 Decimal expansion of the Atkinson-Negro-Santoro constant, a constant associated with Erdős' sum-distinct set constant.

Original entry on oeis.org

3, 1, 6, 6, 8, 4, 1, 7, 3, 6, 5, 2, 7, 0, 5, 8, 2, 0, 2, 1, 8, 3, 5, 6, 5, 7, 2, 3, 0, 8, 2, 8, 8, 3, 2, 9, 6, 4, 6, 6, 7, 9, 9, 5, 4, 3, 9, 1, 7, 0, 8, 3, 4, 4, 6, 0, 2, 2, 0, 0, 5, 6, 8, 8, 2, 0, 2, 0, 0, 1, 4, 0, 2, 1, 2, 6, 1, 4, 6, 8, 2, 5, 6, 5, 6, 5, 0, 1, 7, 8, 9, 8, 2, 5, 5, 0, 4, 0, 0, 4
Offset: 0

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			0.3166841736527058202183565723...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.28, p. 189.

Crossrefs

Programs

  • Mathematica
    digits = 100; Clear[u, s]; u[n_] := u[n] = 2 u[n-1] - u[n-1 - Floor[(n-1)/2 + 1]]; u[0] = 0; u[1] = 1; s[k_] := s[k] = u[k]/2^k // N[#, digits + 5] &; s[dk = 100]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First

A245892 Number of labeled increasing unary-binary trees on n nodes whose breadth-first reading word simultaneously avoids 231 and 312 (or avoids 312 and 321).

Original entry on oeis.org

1, 1, 3, 8, 28, 102, 407, 1701
Offset: 1

Views

Author

Manda Riehl, Aug 19 2014

Keywords

Comments

The number of labeled increasing unary-binary trees with an associated permutation avoiding 231 and 312 simultaneously (or avoids 312 and 321 simultaneously) in the classical sense. The tree's permutation is found by recording the labels in the order in which they appear in a breadth-first search. (Note that a breadth-first search reading word is equivalent to reading the tree labels left to right by levels, starting with the root.)
In some cases, the same breadth-first search reading permutation can be found on differently shaped trees. This sequence gives the number of trees, not the number of permutations.

Examples

			When n=4, a(n)=8.  In the Links above we show the eight labeled increasing trees on four nodes whose permutation simultaneously avoids 231 and 312.
		

Crossrefs

A111554 gives the number of binary trees instead of unary-binary trees.
A002083 gives the number of permutations which avoid 231 and 312 simultaneously that are breadth-first reading words on labeled increasing unary-binary trees.
Previous Showing 11-20 of 23 results. Next