cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 79 results. Next

A181311 Highly abundant numbers k whose largest prime factor is less than log(k).

Original entry on oeis.org

8, 16, 24, 36, 48, 72, 96, 108, 144, 180, 216, 240, 288, 300, 360, 480, 540, 600, 720, 960, 1080, 1200, 1260, 1440, 1620, 1680, 1800, 1920, 2100, 2160, 2400, 2520, 2880, 3024, 3240, 3360, 3600, 3780, 4200, 4320, 5040, 5760, 5880, 6300, 6720, 7200, 7560
Offset: 1

Views

Author

T. D. Noe, Oct 13 2010

Keywords

Comments

Every highly abundant number (A002093) is either in this sequence or A181312. Although it appears that for every n there is at least one prime p such that n*p is another highly abundant number, this conjecture fails for 46846800, the 227th term.

Crossrefs

Programs

  • Mathematica
    seq = {}; sm = 0; Do[s = DivisorSigma[1, n]; If[s > sm, sm = s; If[FactorInteger[n][[-1, 1]] < Log[n], AppendTo[seq, n]]], {n, 1, 8000}]; seq (* Amiram Eldar, Jan 14 2022 *)

A181312 Highly abundant numbers k whose largest prime factor is greater than log(k).

Original entry on oeis.org

1, 2, 3, 4, 6, 10, 12, 18, 20, 30, 42, 60, 84, 90, 120, 168, 210, 336, 420, 504, 630, 660, 840, 1008, 1560, 1980, 2340, 3120, 3960, 4620, 4680, 6120, 6240, 7920, 9240, 10920, 11880, 12240, 13860, 16380, 18480, 19800, 21840, 23760, 27720, 32760, 36960
Offset: 1

Views

Author

T. D. Noe, Oct 13 2010

Keywords

Comments

Every highly abundant number (A002093) is either in this sequence or A181311. Although it appears that dividing any term by its largest prime factor produces another highly abundant number, this conjecture fails for 2942007868800, the 527th term.

Crossrefs

Programs

  • Mathematica
    seq = {}; sm = 0; Do[s = DivisorSigma[1, n]; If[s > sm, sm = s; If[FactorInteger[n][[-1, 1]] > Log[n], AppendTo[seq, n]]], {n, 1, 37000}]; seq (* Amiram Eldar, Jan 14 2022 *)

A279088 Numbers k for which sigma(k) - 3k exceeds sigma(j) - 3j for all j < k.

Original entry on oeis.org

1, 120, 180, 240, 360, 720, 840, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4680, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 22680, 25200, 27720, 30240, 32760, 36960, 37800, 40320, 42840, 45360, 50400, 55440, 65520, 75600, 83160
Offset: 1

Views

Author

Jon E. Schoenfield, Jan 29 2017

Keywords

Comments

Positions of record lows in A033885. - Robert Israel, Jan 30 2017

Examples

			240 is in the sequence because sigma(240) - 3*240 = 744 - 720 = 24, and no k < 240 has a value of sigma(k) - 3k this large.
		

Crossrefs

Cf. A002093 (d=0), A034090 (d=1), and A140522 (d=2).
Cf. A033885.

Programs

  • MATLAB
    N = 10^6; % to get all terms <= N
    V = 1-3*[1:N];
    m = V(1);
    A(1) = 1;
    for n=2:N
      V(n*[1:N/n]) = V(n*[1:N/n]) + n;
      if V(n) > m
        m = V(n);
        A(end+1) = n;
      end
    end
    A % Robert Israel, Jan 30 2017
  • Maple
    m:= numtheory:-sigma(1) - 3:
    count:= 1:
    A[1]:= 1:
    for n from 2 to 10^6 do
      v:= numtheory:-sigma(n)-3*n;
      if v > m then
         count:= count+1;
         A[count]:= n;
         m:= v;
      fi;
    od:
    seq(A[i],i=1..count); # Robert Israel, Jan 30 2017
  • Mathematica
    With[{s = Array[DivisorSigma[1, #] - 3 # &, 10^5]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    isok(k) = {my(x = sigma(k) - 3*k); for (j=1, k-1, if (sigma(j) - 3*j > x, return (0));); 1;} \\ Michel Marcus, Jan 30 2017
    

Extensions

Duplicate a(2)-a(43) removed from b-file by Andrew Howroyd, Feb 27 2018

A281782 Numbers n such that sum of prime power divisors of n > sum of prime power divisors of m for all m < n.

Original entry on oeis.org

2, 3, 4, 7, 8, 16, 27, 32, 64, 121, 125, 128, 243, 256, 512, 729, 1024, 2048, 4096, 6561, 8192, 15625, 16384, 32761, 32768, 59049, 65536, 117649, 130321, 131072, 177147, 262144, 524287, 524288, 1048576, 1594323, 1953125, 2097152, 4194304, 8388608
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2017

Keywords

Comments

Numbers n such that A023889(n) > A023889(m) for all m < n.
Numbers n such that Sum_{p^k|n, p prime, k>=1} p^k > Sum_{p^k|m, p prime, k>=1} p^k for all m < n.

Crossrefs

Programs

  • Mathematica
    mx = 0; t = {}; Do[u = DivisorSum[n, # &, PrimePowerQ[#] &]; If[u > mx, mx = u; AppendTo[t, n]], {n, 8500000}]; t

A316886 Where records occur in A299773.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 336, 360, 420, 480, 504, 540, 600, 630, 660, 672, 720, 840, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980
Offset: 1

Views

Author

Omar E. Pol, Jul 15 2018

Keywords

Comments

First differs from the highly abundant numbers (A002093) at a(41) = 672, while A002093(41) = 720.

Examples

			After a(40) = 660 we have that in the sequence A299773 the terms A299773(661)..A299773(671) are less than A299773(660) = 7187172406818511650939943511021032181119077585. The next term greater than A299773(660) is A299773(672) = 7187180892191062904110726467218877665371246875, so a(41) = 672. Note that both 660 and 672 have the same number of divisors (tau(660) = tau(672) = 24) and the same sum of divisors (sigma(660) = sigma(672) = 2016).
		

Crossrefs

Extensions

More terms from Amiram Eldar, Aug 22 2019

A316916 Records in A299773.

Original entry on oeis.org

1, 2, 3, 9, 48, 119, 269, 2740, 5218, 24319, 42150, 792335, 4513067, 54782479, 101527454, 2489565187, 204017663873, 2328040254212, 26770510056270, 60003612992726, 246161422312909, 2017680047306542, 498466688538984687, 7548204089604377821, 705600340631647816172, 26237144094556522735561
Offset: 1

Views

Author

Omar E. Pol, Jul 16 2018

Keywords

Comments

The indices of these records in A299773 first differ from the highly abundant numbers (A002093) at the 41st term, see A316886.

Crossrefs

A326712 Numbers with a record sum of divisors, weighted by divisor multiplicity (A168512).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 48, 60, 72, 84, 90, 96, 108, 120, 144, 168, 180, 210, 216, 240, 288, 300, 324, 336, 360, 420, 480, 504, 540, 576, 600, 660, 672, 720, 840, 900, 960, 1008, 1080, 1200, 1260, 1440, 1560, 1620, 1680, 1800, 1920, 1980, 2016
Offset: 1

Views

Author

Amiram Eldar, Oct 18 2019

Keywords

Comments

The corresponding record values are 1, 3, 4, 9, 12, 19, 30, 41, 42, 44, 64, 72, 75, 102, 134, 170, 208, 226, 237, 264, 294, ...

Examples

			The first values of A168512(n) for n=1..8 are {1, 3, 4, 9, 6, 12, 8, 19}. The record values are 1, 3, 4, 9, 12, 19 for 1, 2, 3, 4, 6, 8. Therefore this sequence begins with 1, 2, 3, 4, 6, 8.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := 1 + DivisorSum[n, #*IntegerExponent[n, #] &, # > 1 &]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 100000}]; seq (* after Michael De Vlieger at A168512 *)

A348629 Nonexponential highly abundant numbers: numbers m such that nesigma(m) > nesigma(k) for all k < m, where nesigma(k) is the sum of nonexponential divisors of n (A160135).

Original entry on oeis.org

1, 6, 10, 12, 18, 24, 30, 42, 48, 54, 60, 78, 84, 90, 96, 120, 168, 192, 210, 240, 270, 312, 330, 360, 384, 420, 480, 630, 672, 840, 960, 1056, 1080, 1248, 1320, 1440, 1560, 1680, 1890, 1920, 2280, 2310, 2400, 2520, 2640, 2688, 3000, 3120, 3240, 3360, 4200, 4320
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 6, 8, 10, 15, 30, 42, 54, 58, 60, 78, ... (see the link for more values).

Examples

			The first 6 values of nesigma(k), for k = 1 to 6 are 1, 1, 1, 1, 1 and 6. The record values, 1 and 6, occur at 1 and 6, the first 2 terms of this sequence.
		

Crossrefs

The nonexponential version of A002093.
Similar sequences: A285614, A292983, A327634, A328134, A329883, A348272.

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[First[#]^d, {d, Divisors[Last[#]]}] &) /@ FactorInteger[n]; s[1] = 1; s[n_] := DivisorSigma[1, n] - esigma[n]; seq = {}; sm = -1; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A355578 Numbers whose sum of 3-smooth divisors sets a new record.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 108, 144, 192, 216, 288, 324, 384, 432, 576, 648, 768, 864, 972, 1152, 1296, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4608, 5184, 5832, 6912, 7776, 8748, 9216, 10368, 11664, 13824, 15552, 17496
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Comments

Numbers m such that A072079(m) > A072079(k) for all k < m.
All the terms are 3-smooth numbers (A003586).
Equivalently, 3-smooth numbers k such that A000203(k) sets a new record.
Analogous to highly abundant numbers (A002093) with 3-smooth numbers only.

Examples

			The numbers of 3-smooth divisors of the first 6 positive integers are 1, 3, 4, 7, 1 and 12. The record values, 1, 3, 4 and 12, occur at 1, 2, 3, 4 and 6, the first 5 terms of this sequence.
		

Crossrefs

Subsequence of A003586.
A355579 is a subsequence.

Programs

  • Mathematica
    s[n_] := Module[{e = IntegerExponent[n, {2, 3}], p}, p = {2, 3}^e; If[Times @@ p == n, (2^(e[[1]] + 1) - 1)*(3^(e[[2]] + 1) - 1)/2, 0]]; sm = 0; seq = {}; Do[sn = s[n]; If[sn > sm, sm = sn; AppendTo[seq, n]], {n, 1, 18000}]; seq
  • PARI
    lista(nmax) = {my(list = List(), smax = 0, e2, e3, s); for(n = 1, nmax, e2 = valuation(n, 2); e3 = valuation(n, 3); s = if(2^e2 * 3^e3 == n, (2^(e2 + 1) - 1)*(3^(e3 + 1) - 1)/2, 0); if(s > smax, smax = s;  listput(list, n))); Vec(list)};
    
  • Python
    from sympy import multiplicity as v
    from itertools import count, takewhile
    def f(n): return (2**(v(2, n)+1)-1) * (3**(v(3, n)+1)-1)//2
    def smooth3(lim):
        pows2 = list(takewhile(lambda x: x record: record = v; records.append(argv)
        return records
    print(aupto(10**5)) # Michael S. Branicky, Jul 08 2022

A055721 Numbers n such that sigma_2(n)/n > sigma_2(k)/k for all k < n.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 30, 36, 40, 42, 48, 54, 60, 66, 70, 72, 78, 80, 84, 90, 96, 108, 120, 132, 140, 144, 150, 156, 168, 180, 192, 204, 210, 216, 228, 240, 252, 264, 270, 276, 288, 300, 312, 324, 330, 336, 348, 360, 384, 396, 408
Offset: 1

Views

Author

Robert G. Wilson v, Jun 09 2000

Keywords

Comments

sigma_2(n) is the sum of the squares of the divisors of n (A001157).

Crossrefs

Cf. A002182 (records of sigma_0(n)), A002093 (records of sigma_1(n)), A004394 (records of sigma_1(n)/n), A193988 (records of sigma_2(n)), A208767 (records of sigma_2(n)/n^2).

Programs

  • Maple
    m:= 0: res:= NULL:
    for n from 1 to 500 do
      r:= numtheory:-sigma[2](n)/n;
      if r > m then
        m:= r;
        res:= res, n;
      fi
    od:
    res; # Robert Israel, Nov 12 2016
  • Mathematica
    a=0; Do[b=DivisorSigma[2, n]/n; If[b>a, a=b; Print[n]], {n, 1, 10^7}]

Extensions

Name edited by Michel Marcus, Nov 12 2016
Previous Showing 51-60 of 79 results. Next