cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A345454 E.g.f.: log(1 - log(1 - x) * exp(x)).

Original entry on oeis.org

0, 1, 2, 1, -5, 3, 141, 348, -1938, 3013, 274327, 1583338, -4613476, 41135339, 3201505997, 33153080054, 49123558416, 2360520208825, 133442956587099, 2109709010976874, 14751973018988252, 338170133891984663, 15120630911878380457, 324654726628159335686
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Log[1 - Log[1 - x] Exp[x]], {x, 0, nmax}], x] Range[0, nmax]!
    A002104[n_] := A002104[n] = n! Sum[1/((n - k) k!), {k, 0, n - 1}]; a[0] = 0; a[n_] := a[n] = A002104[n] - (1/n) Sum[Binomial[n, k] A002104[n - k] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
  • PARI
    my(x='x+O('x^25)); concat(0, Vec(serlaplace(log(1 - log(1 - x) * exp(x))))) \\ Michel Marcus, Jul 19 2021

Formula

a(0) = 0; a(n) = A002104(n) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * A002104(n-k) * k * a(k).

A346405 a(n) = (n!)^2 * Sum_{k=0..n-1} 1 / ((n-k)^2 * k!).

Original entry on oeis.org

0, 1, 5, 31, 268, 3476, 70656, 2202432, 98622336, 5954736384, 463100042880, 44924476970880, 5308404719823360, 749930460864929280, 124754522068412651520, 24129984694192721971200, 5368254991077002482483200, 1360938718277588430567014400, 389980903967231535140578099200
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/((n - k)^2 k!), {k, 0, n - 1}], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[PolyLog[2, x] Exp[x], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = polylog(2,x) * exp(x).

A346410 a(n) = (n!)^2 * Sum_{k=0..n-1} 1 / ((n-k) * k!)^2.

Original entry on oeis.org

0, 1, 5, 22, 152, 2001, 45097, 1527506, 71864928, 4466430513, 353828600029, 34770661312190, 4148422395161464, 590479899466175681, 98824492409739430401, 19209838771051338898234, 4291488438323868507946880, 1091819942877526843993466529, 313819508664449992611846900981
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!)^2 Sum[1/((n - k) k!)^2, {k, 0, n - 1}], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[PolyLog[2, x] BesselI[0, 2 Sqrt[x]], {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = polylog(2,x) * BesselI(0,2*sqrt(x)).

A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 10, 9, 4, 1, 34, 33, 16, 5, 1, 154, 153, 76, 25, 6, 1, 874, 873, 436, 145, 36, 7, 1, 5914, 5913, 2956, 985, 246, 49, 8, 1, 46234, 46233, 23116, 7705, 1926, 385, 64, 9, 1, 409114, 409113, 204556, 68185, 17046, 3409, 568, 81, 10, 1
Offset: 0

Views

Author

Werner Schulte, Oct 20 2021

Keywords

Comments

The matrix inverse M = T^(-1) has terms M(n,n) = 1 for n >= 0, M(n,n-1) = -(n+1) for n > 0, and M(n,n-2) = n for n > 1, otherwise 0.

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n\k :       0       1       2      3      4     5    6   7   8  9
=================================================================
  0 :       1
  1 :       2       1
  2 :       4       3       1
  3 :      10       9       4      1
  4 :      34      33      16      5      1
  5 :     154     153      76     25      6     1
  6 :     874     873     436    145     36     7    1
  7 :    5914    5913    2956    985    246    49    8   1
  8 :   46234   46233   23116   7705   1926   385   64   9   1
  9 :  409114  409113  204556  68185  17046  3409  568  81  10  1
  etc.
		

Crossrefs

Cf. A109398, A094587, A002104 (row sums), A173184 (alt. row sums), A000012 (main diagonal), A000027(1st subdiagonal), A000290 (2nd subdiagonal), A081437 (3rd subdiagonal), A192398 (4th subdiagonal), A003422 (column 0), A007489 (column 1), A345889 (column 2), A143122.

Programs

  • Mathematica
    T[n_, k_] := Sum[i!, {i, k, n}]/k!; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Oct 20 2021 *)

Formula

T(n,n) = 1 and T(2*n,n) = A109398(n) for n >= 0; T(n,n-1) = n+1 for n > 0; T(n,n-2) = n^2 for n > 1.
T(n,k) - T(n-1,k) = (n!) / (k!) = A094587(n,k) for 0 <= k < n.
T(n,k) = (k+2) * (T(n,k+1) - T(n,k+2)) for 0 <= k < n-1.
T(n,k) = (T(n,k-1) - 1) / k for 0 < k <= n.
T(n,k) * T(n-1,k-1) - T(n-1,k) * T(n,k-1) = (n!) / (k!) for 0 < k < n.
T(n,1) = T(n,0)-1 = Sum_{k=0..n-1} T(n,k)/(k+2) for n > 0 (conjectured).
Sum_{k=0..n} binomial(k+r,k) * (1-k) * T(n+r,k+r) = binomial(n+r+1,n) for n >= 0 and r >= 0.
Sum_{k=0..n} (-1)^k * (k+1) * T(n,k) = (1 + (-1)^n) / 2 for n >= 0.
Sum_{k=0..n} (-1)^k * (k!) * T(n,k) = Sum_{k=0..n} (k!) * (1+(-1)^k) / 2 for n >= 0.
The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k for n >= 0 satisfy the following equations:
(a) p(n,x) - p'(n,x) = (x^(n+1)-1) / (x-1) for n >= 0, where p' is the first derivative of p;
(b) p(n,x) - (n+1) * p(n-1,x) + n * p(n-2,x) = x^n for n > 1.
(c) p(n,x) = (x+1) * p(n-1,x) + 1 + Sum_{i=1..n-1} (d/dx)^i p(n-1,x) for n > 0 (conjectured).
Row sums p(n,1) equal A002104(n+1) for n >= 0.
Alternating row sums p(n,-1) equal A173184(n) for n >= 0 (conjectured).
The three conjectures stated above are true. See links. - Sela Fried, Jul 11 2024.
From Peter Luschny, Jul 11 2024: (Start)
T(n, k) = (t(k) - t(n + 1)) / k!, where t(n) = (-1)^(n + 1) * Gamma(n + 1) * Subfactorial(-(n + 1)).
T(n, k) = A143122(n, k) / k!. (End)

A352149 a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * (n-k-1)!.

Original entry on oeis.org

0, 1, 5, 20, 90, 499, 3395, 27474, 256984, 2720169, 32080501, 416574212, 5900292266, 90461885331, 1491788697451, 26318520300986, 494449968500832, 9852544385880961, 207497251731808341, 4604297325494524516, 107348917822006139114, 2623224641748615607715, 67035139167875735937219
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 (n - k - 1)!, {k, 0, n - 1}], {n, 0, 22}]
    nmax = 22; Assuming[x > 0, CoefficientList[Series[BesselI[0, 2 Sqrt[x]] (ExpIntegralEi[x] - Log[x] - EulerGamma), {x, 0, nmax}], x]] Range[0, nmax]!^2
  • PARI
    a(n) = sum(k=0, n-1, binomial(n,k)^2 * (n-k-1)!); \\ Michel Marcus, Mar 06 2022

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) * (Ei(x) - log(x) - gamma).
From Vaclav Kotesovec, Mar 06 2022: (Start)
Recurrence: n*(n^3 - 12*n^2 + 46*n - 50)*a(n) = (2*n^5 - 24*n^4 + 95*n^3 - 123*n^2 + 37*n - 2)*a(n-1) - (n^6 - 12*n^5 + 51*n^4 - 95*n^3 + 121*n^2 - 139*n + 74)*a(n-2) + (n-2)*(2*n^5 - 27*n^4 + 140*n^3 - 344*n^2 + 409*n - 173)*a(n-3) - (n-3)^2*(n-2)*(n^3 - 9*n^2 + 25*n - 15)*a(n-4).
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^(n - 3/4) / sqrt(2). (End)

A354419 Expansion of e.g.f. log(1+4*x) * exp(x)/4.

Original entry on oeis.org

0, 1, -2, 23, -276, 4509, -91190, 2205587, -62104168, 1995807993, -72089029802, 2891304481999, -127498010037244, 6131189086886421, -319320539953144158, 17905976286288568267, -1075611833288214177232, 68909527979479961534705
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(log(1+4*x)*exp(x)/4)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, (-4)^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(-4*i+5)*v[i]+4*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} (-4)^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (-4 * n + 5) * a(n-1) + 4 * (n-1) * a(n-2) + 1.
a(n) ~ -(-1)^n * (n-1)! * 4^(n-1) / exp(1/4). - Vaclav Kotesovec, Jun 08 2022

A356926 E.g.f. satisfies A(x)^A(x) = 1/(1 - x)^exp(x).

Original entry on oeis.org

1, 1, 2, 3, 10, 35, 121, 1092, 5216, 39321, 558643, 2433508, 48144944, 688652549, 2176310995, 145742587616, 1334993574032, 5551320939809, 799648465754835, 1049695714507276, 90069170433616208, 6281942689646504501, -53282051261767839293, 2356158301117802408472
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; A[_] = 1;
    Do[A[x_] = ((1 - x)^(-Exp[x]))^(1/A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-k+1)^(k-1)*(-exp(x)*log(1-x))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(-exp(x)*log(1-x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(-exp(x)*log(1-x)/lambertw(-exp(x)*log(1-x))))

Formula

E.g.f.: A(x) = Sum_{k>=0} (-k+1)^(k-1) * (-exp(x) * log(1-x))^k / k!.
E.g.f.: A(x) = exp( LambertW(-exp(x) * log(1-x)) ).
E.g.f.: A(x) = -exp(x) * log(1-x)/LambertW(-exp(x) * log(1-x)).

A381016 Expansion of e.g.f. -log(1-x) * sin(x).

Original entry on oeis.org

0, 0, 2, 3, 4, 20, 110, 651, 4520, 36000, 322618, 3213595, 35226860, 421419492, 5463436134, 76301056755, 1142009233872, 18236159031584, 309463272791538, 5561354285804115, 105510576441518164, 2107380222724155540, 44200537412519181278, 971311172969442165883
Offset: 0

Views

Author

Seiichi Manyama, Feb 12 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-log(1-x)*sin(x))))
    
  • PARI
    a(n) = -sum(k=1, n\2, (-1)^k*(n-2*k)!*binomial(n, 2*k-1));

Formula

a(n) = -Sum_{k=1..floor(n/2)} (-1)^k * (n-2*k)! * binomial(n,2*k-1).

A320838 a(0) = 0, a(n) is the number of x such that a(x) = a(n-1) and there exists no y such that x < y < n and a(y) > a(n-1).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 4, 1, 1, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 4, 2, 1, 1, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 4, 3, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 2, 2, 3, 3, 4, 4, 5
Offset: 0

Views

Author

Thomas Anton, Oct 21 2018

Keywords

Comments

After the n-th occurrence (with n <= m) of m after a number larger than n comes the segment of the sequence from the first appearance of n to the first appearance of m.
The first appearance of n in this sequence is given by A002104(n).

Examples

			Start with a(0) = 0.
No larger number has occurred yet, and the number of 0's since the start of the sequence is 1, so a(1) = 1.
No larger number has occurred yet, and the number of 1's since the start of the sequence is 1, so a(2) = 1.
Still no larger number has occurred, and the number of 1's since the start of the sequence is 2, so a(3) = 2.
No larger number has occurred yet, and the number of 2's since the start of the sequence is 1, so a(4) = 1.
The number of 1's that have occurred since the last appearance of a larger number is 1, so a(5) = 1.
Etc.
		

Crossrefs

Cf. A002104.

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = Count[Range[0, n-1], x_ /; a[x] == a[n - 1] && ! AnyTrue[ Range[x+1, n-1], a[#] > a[n-1] &]]; a /@ Range[0, 89] (* Giovanni Resta, Oct 22 2018 *)
  • PARI
    lista(nn) = {va = vector(nn); va[1] = 0; for (n=2, nn, nb = 0; forstep (k=n-1, 1, -1, if (va[k] == va[n-1], nb++); if (va[k] > va[n-1], break);); va[n] = nb;); va;} \\ Michel Marcus, Oct 22 2018

Formula

Let s(n) be the first time n appears in the sequence, then s(n) = Sum_{k=0...n-1} (s(n-1)-s(k)+1).
Previous Showing 31-39 of 39 results.