cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 165 results. Next

A377696 Decimal expansion of the circumradius of a truncated dodecahedron with unit edge length.

Original entry on oeis.org

2, 9, 6, 9, 4, 4, 9, 0, 1, 5, 8, 6, 3, 3, 9, 8, 4, 6, 7, 0, 4, 2, 1, 6, 6, 6, 9, 5, 6, 9, 2, 5, 9, 7, 9, 6, 3, 6, 0, 0, 7, 4, 7, 7, 0, 0, 3, 2, 8, 0, 9, 6, 6, 9, 9, 8, 3, 7, 8, 6, 2, 7, 7, 6, 1, 2, 2, 1, 0, 6, 9, 2, 4, 4, 8, 8, 8, 3, 7, 5, 2, 0, 9, 0, 7, 9, 6, 4, 7, 1
Offset: 1

Views

Author

Paolo Xausa, Nov 04 2024

Keywords

Examples

			2.9694490158633984670421666956925979636007477003...
		

Crossrefs

Cf. A377694 (surface area), A377695 (volume), A377697 (midradius), A377698 (Dehn invariant, negated).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Sqrt[74 + 30*Sqrt[5]]/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(74 + 30*sqrt(5))/4 = sqrt(74 + 30*A002163)/4.

A378388 Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.

Original entry on oeis.org

1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
Offset: 2

Views

Author

Paolo Xausa, Nov 27 2024

Keywords

Comments

The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.

Examples

			11.925695879998878380848926233233473255683297917928...
		

Crossrefs

Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle).
Cf. A377341 (surface area of a truncated octahedron with unit edge).

Programs

  • Mathematica
    First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]

Formula

Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899.

A380861 Decimal expansion of the smallest acute vertex angle, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

1, 1, 8, 3, 0, 3, 6, 7, 2, 8, 4, 2, 0, 0, 8, 3, 4, 1, 4, 7, 9, 0, 1, 3, 6, 1, 8, 6, 7, 9, 9, 8, 8, 7, 8, 6, 5, 0, 5, 4, 8, 2, 0, 6, 6, 8, 3, 6, 8, 4, 0, 6, 3, 5, 9, 7, 6, 6, 7, 9, 2, 8, 5, 3, 3, 5, 5, 6, 4, 0, 7, 3, 1, 4, 3, 9, 9, 2, 7, 5, 3, 9, 6, 4, 9, 4, 8, 8, 0, 3
Offset: 1

Views

Author

Paolo Xausa, Feb 06 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (this constant), two largest acute angles (A380862) and one obtuse angle (A380863).

Examples

			1.1830367284200834147901361867998878650548206683684...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[(9*Sqrt[5] - 5)/40], 10, 100]]

Formula

Equals arccos((9*sqrt(5) - 5)/40) = arccos((9*A002163 - 5)/40).
Equals 2*Pi - 2*A380862 - A380863.

A380863 Decimal expansion of the obtuse vertex angle, in radians, in a deltoidal hexecontahedron face.

Original entry on oeis.org

2, 0, 6, 4, 1, 7, 7, 8, 2, 3, 8, 3, 9, 0, 7, 2, 1, 3, 4, 9, 3, 0, 7, 6, 7, 8, 6, 4, 9, 8, 6, 9, 7, 3, 0, 0, 6, 9, 9, 7, 0, 5, 1, 3, 6, 5, 3, 2, 7, 4, 7, 0, 8, 2, 1, 9, 6, 6, 9, 4, 4, 2, 8, 6, 3, 4, 8, 2, 2, 1, 7, 1, 4, 0, 7, 1, 3, 8, 7, 1, 6, 7, 8, 4, 1, 5, 5, 7, 8, 3
Offset: 1

Views

Author

Paolo Xausa, Feb 07 2025

Keywords

Comments

A deltoidal hexecontahedron face is a kite with one smallest acute angle (A380861), two largest acute angles (A380862) and one obtuse angle (this constant).

Examples

			2.0641778238390721349307678649869730069970513653...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcCos[(-5 - 2*Sqrt[5])/20], 10, 100]]

Formula

Equals arccos((-5 - 2*sqrt(5))/20) = arccos((-5 - 2*A002163)/20).
Equals 2*Pi - A380861 - 2*A380862.

A384909 Decimal expansion of the volume of an elongated pentagonal orthobicupola with unit edge.

Original entry on oeis.org

1, 2, 3, 4, 2, 2, 9, 9, 4, 7, 9, 6, 0, 4, 5, 1, 9, 7, 6, 8, 3, 0, 4, 6, 2, 4, 6, 6, 5, 0, 6, 7, 3, 0, 9, 5, 4, 0, 6, 0, 4, 2, 4, 6, 5, 0, 4, 9, 9, 3, 1, 8, 2, 0, 3, 3, 2, 9, 2, 4, 2, 0, 2, 8, 6, 4, 8, 4, 5, 1, 9, 4, 5, 5, 4, 2, 1, 4, 6, 7, 1, 6, 2, 0, 2, 2, 3, 7, 0, 1
Offset: 2

Views

Author

Paolo Xausa, Jun 12 2025

Keywords

Comments

The elongated pentagonal orthobicupola is Johnson solid J_38.
Also the volume of an elongated pentagonal gyrobicupola (Johnson solid J_39) with unit edge.

Examples

			12.342299479604519768304624665067309540604246504993...
		

Crossrefs

Cf. A384625 (surface area - 10).

Programs

  • Mathematica
    First[RealDigits[(10 + 8*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J38", "Volume"], 10, 100]]

Formula

Equals (10 + 8*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (10 + 8*A002163 + 15*sqrt(5 + A010476))/6.
Equals the largest root of 1296*x^4 - 8640*x^3 - 82440*x^2 - 109200*x + 76525.

A384910 Decimal expansion of the volume of an elongated pentagonal orthocupolarotunda with unit edge.

Original entry on oeis.org

1, 6, 9, 3, 6, 0, 1, 7, 1, 2, 9, 3, 9, 6, 0, 2, 8, 7, 0, 7, 2, 7, 8, 1, 7, 1, 5, 8, 3, 2, 8, 2, 4, 3, 3, 3, 8, 3, 8, 5, 1, 3, 7, 6, 9, 4, 1, 3, 6, 8, 4, 9, 2, 9, 9, 3, 1, 6, 2, 2, 5, 9, 8, 8, 7, 2, 0, 9, 0, 7, 6, 8, 1, 6, 3, 1, 6, 4, 8, 7, 5, 0, 3, 2, 4, 9, 8, 4, 7, 6
Offset: 2

Views

Author

Paolo Xausa, Jun 13 2025

Keywords

Comments

The elongated pentagonal orthocupolarotunda is Johnson solid J_40.
Also the volume of an elongated pentagonal gyrocupolarotunda (Johnson solid J_41) with unit edge.

Examples

			16.936017129396028707278171583282433383851376941...
		

Crossrefs

Cf. A384911 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/12*(11 + 5*Sqrt[5] + 6*Sqrt[5 + Sqrt[20]]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J40", "Volume"], 10, 100]]

Formula

Equals (5/12)*(11 + 5*sqrt(5) + 6*sqrt(5 + 2*sqrt(5))) = (5/12)*(11 + 5*A002163 + 6*sqrt(5 + A010476)).
Equals the largest root of 1296*x^4 - 23760*x^3 + 26100*x^2 + 84000*x - 111875.

A385262 Decimal expansion of the volume of a gyroelongated pentagonal cupolarotunda with unit edge.

Original entry on oeis.org

1, 5, 9, 9, 1, 0, 9, 6, 1, 6, 2, 0, 0, 4, 8, 9, 0, 0, 6, 3, 0, 6, 2, 9, 8, 0, 0, 1, 1, 7, 2, 0, 8, 0, 4, 0, 5, 5, 6, 9, 4, 0, 0, 9, 9, 4, 0, 0, 5, 3, 3, 3, 4, 9, 3, 4, 8, 6, 4, 7, 4, 6, 8, 8, 9, 5, 0, 2, 0, 0, 4, 8, 5, 0, 0, 4, 8, 4, 4, 3, 8, 1, 4, 5, 3, 3, 0, 4, 3, 2
Offset: 2

Views

Author

Paolo Xausa, Jun 27 2025

Keywords

Comments

The gyroelongated pentagonal cupolarotunda is Johnson solid J_47.

Examples

			15.991096162004890063062980011720804055694009940053...
		

Crossrefs

Cf. A385263 (surface area).

Programs

  • Mathematica
    First[RealDigits[5/12*(11 + 5*# + 2*Sqrt[2*(Sqrt[650 + 290*#] - # - 1)]) & [Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J47", "Volume"], 10, 100]]

Formula

Equals (5/12)*(11 + 5*sqrt(5) + 2*sqrt(2*(sqrt(650 + 290*sqrt(5)) - sqrt(5) - 1))) = (5/12)*(11 + 5*A002163 + 2*sqrt(2*(sqrt(650 + 290*A002163) - A002163 - 1))).
Equals the largest real root of 1679616*x^8 - 61585920*x^7 + 851472000*x^6 - 5108832000*x^5 + 4745790000*x^4 + 21346200000*x^3 - 29019375000*x^2 - 4576875000*x - 405859375.

A385263 Decimal expansion of the surface area of a gyroelongated pentagonal cupolarotunda with unit edge.

Original entry on oeis.org

3, 2, 1, 9, 8, 7, 8, 6, 3, 7, 0, 3, 5, 0, 4, 4, 4, 7, 7, 7, 6, 7, 8, 2, 3, 9, 3, 2, 9, 8, 9, 6, 6, 5, 0, 4, 0, 6, 6, 0, 1, 1, 6, 5, 1, 6, 0, 9, 1, 2, 2, 1, 8, 7, 9, 9, 9, 3, 7, 9, 7, 4, 0, 1, 9, 3, 7, 1, 4, 9, 6, 8, 4, 3, 4, 1, 4, 7, 6, 3, 9, 4, 3, 7, 8, 7, 1, 1, 7, 8
Offset: 2

Views

Author

Paolo Xausa, Jun 30 2025

Keywords

Comments

The gyroelongated pentagonal cupolarotunda is Johnson solid J_47.

Examples

			32.198786370350444777678239329896650406601165160912...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[5 + (35*Sqrt[3] + 7*Sqrt[25 + 10*Sqrt[5]])/4, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J47", "SurfaceArea"], 10, 100]]

Formula

Equals 5 + (35*sqrt(3) + 7*sqrt(25 + 10*sqrt(5)))/4 = 5 + (35*A002194 + 7*sqrt(25 + 10*A002163))/4.
Equals the largest root of 256*x^8 - 10240*x^7 - 134400*x^6 + 7616000*x^5 - 756000*x^4 - 1373680000*x^3 + 2724312500*x^2 + 55840875000*x - 106054671875.

A385510 Decimal expansion of the surface area of an augmented pentagonal prism with unit edge.

Original entry on oeis.org

9, 1, 7, 3, 0, 0, 5, 6, 0, 8, 7, 4, 6, 8, 1, 1, 1, 3, 9, 0, 4, 5, 4, 7, 0, 2, 9, 6, 2, 8, 3, 0, 9, 1, 5, 6, 5, 7, 5, 7, 5, 5, 3, 5, 9, 3, 8, 3, 0, 7, 7, 7, 2, 8, 6, 4, 6, 9, 9, 9, 6, 3, 9, 3, 4, 9, 9, 6, 7, 1, 0, 0, 1, 3, 2, 6, 7, 3, 2, 4, 9, 9, 7, 4, 6, 0, 2, 8, 6, 6
Offset: 1

Views

Author

Paolo Xausa, Jul 02 2025

Keywords

Comments

The augmented pentagonal prism is Johnson solid J_52.

Examples

			9.17300560874681113904547029628309156575755359383...
		

Crossrefs

Cf. A385509 (volume).

Programs

  • Mathematica
    First[RealDigits[4 + Sqrt[3] + Sqrt[25/4 + 5*Sqrt[5]/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J52", "SurfaceArea"], 10, 100]]

Formula

Equals 4 + sqrt(3) + sqrt(25/4 + 5*sqrt(5)/2) = 4 + A002194 + sqrt(25/4 + 5*A002163/2).
Equals the largest root of 256*x^8 - 8192*x^7 + 105216*x^6 - 690176*x^5 + 2391264*x^4 - 3788288*x^3 + 193904*x^2 + 6427776*x - 5201159.

A385535 Decimal expansion of the surface area of a biaugmented pentagonal prism with unit edge.

Original entry on oeis.org

9, 9, 0, 5, 0, 5, 6, 4, 1, 6, 3, 1, 5, 6, 8, 8, 4, 3, 2, 5, 7, 2, 9, 1, 6, 6, 3, 7, 7, 8, 8, 9, 6, 3, 9, 3, 2, 7, 0, 0, 3, 5, 8, 8, 4, 7, 6, 4, 1, 1, 5, 7, 9, 1, 4, 5, 2, 5, 8, 0, 3, 3, 7, 2, 9, 5, 1, 6, 0, 4, 0, 1, 8, 2, 3, 5, 5, 3, 2, 5, 3, 6, 8, 2, 7, 1, 7, 4, 8, 5
Offset: 1

Views

Author

Paolo Xausa, Jul 03 2025

Keywords

Comments

The biaugmented pentagonal prism is Johnson solid J_53.

Examples

			9.905056416315688432572916637788963932700358847641...
		

Crossrefs

Cf. A385534 (volume).

Programs

  • Mathematica
    First[RealDigits[3 + Sqrt[12] + Sqrt[25/4 + 5*Sqrt[5]/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J53", "SurfaceArea"], 10, 100]]

Formula

Equals 3 + 2*sqrt(3) + sqrt(25/4 + 5*sqrt(5)/2) = 3 + A010469 + sqrt(25/4 + 5*A002163/2).
Equals the largest root of 256*x^8 - 6144*x^7 + 45824*x^6 - 50688*x^5 - 729376*x^4 + 2504064*x^3 - 583184*x^2 - 4746912*x + 1628761.
Previous Showing 91-100 of 165 results. Next