cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A278720 The p-defect p - N(p) of the congruence y^2 == x^3 + 4*x (mod p) for primes p, where N(p) is the number of solutions given by A276730.

Original entry on oeis.org

0, 0, -2, 0, 0, 6, 2, 0, 0, -10, 0, -2, 10, 0, 0, 14, 0, -10, 0, 0, -6, 0, 0, 10, 18, -2, 0, 0, 6, -14, 0, 0, -22, 0, 14, 0, 22, 0, 0, -26, 0, -18, 0, -14, -2, 0, 0, 0, 0, 30, 26, 0, -30, 0, 2, 0, -26, 0, -18, 10, 0, -34, 0, 0, 26, 22, 0, 18, 0, -10, 34, 0, 0, 14, 0, 0, -34, 38, 2, -6, 0, 30, 0, 34, 0, 0, -14, 42, 38, 0, 0, 0, 0, 0, 0, 0, -10, -22, 0, -42
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2016

Keywords

Comments

This sequence gives also the p-defects for the congruences y^2 == x^3 - x (mod p), y^2 == x^3 - 11*x - 14 (mod p) and y^2 == x^3 - 11*x + 14 (mod p). See the Cremona link, Table 1, N = 32. - Wolfdieter Lang, Dec 22 2016
This elliptic curve y^2 = x^3 + 4*x appears as strong Weil curve for the weight 2 newform (eta(4*tau)*eta(8*tau))^2 of level N=32, with Dedekind's eta function. See the Martin-Ono link, Theorem 2, p. 3173, the row with Conductor 32. See also A002171 for the expansion of this newform in powers of q^4 (but with different offset). The also Nr. 49 of the Martin Table 1.
From this L-series of this elliptic curve one has:
a(n) = 0 if prime(n) == 2 or 3 (mod 4). (see the conjecture by Robert Israel, Sep 28 2016 in A276730).
If prime(n) == 1 (mod 4) = A002144(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + B(m)^2 with the odd A(m) = A002972(m) and the even B(m) = 2*A002973(m). It turns out that 4*A002144(m) - a(m^2) = (2*B(m))^2 for m=m(n), and the sign s(m) of a(m) is + if A(m) + B(m) == 1 (mod 4) and - if A(m) + B(m) == 3 (mod 4). For the primes == 1 (mod 4) leading to sign + or - see A279392 or A279393, respectively. One has thus s(m) = (-1)^((A(m)-1)/2 + B(m)/2). See the Martin-Ono formula for a_{32}(p) in Theorem 3, p. 3175. This leads to the a(n) formula given below.

Examples

			a(1) = 0  because prime(1) = 2 == 2 (mod 4).
a(2) = 0 because prime(2) = 3 == 3 (mod 4).
a(3) = -2 because prime(3) = 5 = A002144(1) = A002972(1)^2 + (2*A002973(1))^2 = 1^2 + 2^2. Hence 2*A(1) = 2*A002972(1) = 2, and the sign s(1) = - because A(1) + B(1) = 1 + 2*1 = 3 == 3 (mod 4).
a(6) = +6 because prime(6) = 13 = A002144(2) = A(2)^2 + B(2)^2 = 3^2 + (2*1)^2. Hence 2*A(2) = 6 and the sign is + because A(2) + B(2) = 3 + 2 = 5 == 1 (mod 4).
		

Crossrefs

Programs

  • PARI
    a(n) =  my(p=prime(n)); -sum(k=1, p-3, kronecker(k*(k+1)*(k+2), p)); \\ Michel Marcus, Nov 06 2020

Formula

a(n) = 0 if prime(n) == 2 or 3 (mod 4) (this is conjecture II from above).
a(n) = s(m)*2*A(m) if prime(n) = A002144(m), with A(m) = A002972(m) and the sign s(m) = (-1)^((A(m)-1)/2 + B(m)/2).
a(n) = - Sum_{k=1..p-3} ((k*(k+1)*(k+2))/p) where (x/y) is the Kronecker symbol. - Michel Marcus, Nov 06 2020

A319455 Expansion of Product_{k>=1} 1/((1 - x^k)*(1 - x^(2*k)))^2.

Original entry on oeis.org

1, 2, 7, 14, 35, 66, 140, 252, 485, 840, 1512, 2534, 4347, 7084, 11705, 18622, 29862, 46522, 72779, 111310, 170534, 256586, 386101, 572488, 848050, 1240974, 1812979, 2621486, 3782669, 5410360, 7720237, 10932740, 15443120, 21669546, 30327570, 42196022, 58555543, 80832850
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Comments

Convolution inverse of A002171.
Self-convolution of A002513.
Convolution of A000041 and A029862.
Euler transform of period 2 sequence [2, 4, ...].

Crossrefs

Programs

  • Maple
    a:=series(mul(1/((1-x^k)*(1-x^(2*k)))^2,k=1..55),x=0,38): seq(coeff(a,x,n),n=0..37); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/((1 - x^k)*(1 - x^(2*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[1/(QPochhammer[x] QPochhammer[x^2])^2, {x, 0, nmax}], x]
    nmax = 37; CoefficientList[Series[Exp[2 Sum[(4 DivisorSigma[1, k] - DivisorSigma[1, 2 k]) x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    seq(n)={Vec(exp(2*sum(k=1, n, (4*sigma(k) - sigma(2*k))*x^k/k) + O(x*x^n)))} \\ Andrew Howroyd, Sep 19 2018

Formula

G.f.: Product_{k>=1} (1 + x^k)^2/(1 - x^(2*k))^4.
G.f.: exp(2*Sum_{k>=1} (4*sigma(k) - sigma(2*k))*x^k/k).
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(13/4)*n^(7/4)). - Vaclav Kotesovec, Sep 14 2021

A228072 Expansion of psi(x^2)^2 * phi(-x^2)^6 + 8 * x * psi(x^2)^6 * phi(-x^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, -10, 16, 37, -40, -50, -80, -30, 40, 128, 48, -25, 80, -34, 320, -320, -160, 310, -400, 410, 152, -370, -416, -87, -240, -410, 400, 320, -200, 30, 592, 500, 776, 384, 400, -630, -200, -640, -1120, -359, 552, 300, -272, -326, -800, 2560, -400, -110
Offset: 0

Views

Author

Michael Somos, Sep 02 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x - 10*x^2 + 16*x^3 + 37*x^4 - 40*x^5 - 50*x^6 - 80*x^7 - 30*x^8 + ...
G.f. = q + 8*q^3 - 10*q^5 + 16*q^7 + 37*q^9 - 40*q^11 - 50*q^13 - 80*q^15 - 30*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^12 + 8 x QPochhammer[ x^4]^12) / (QPochhammer[ x^2] QPochhammer[ x^4])^2, {x, 0, n}];
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n);polcoeff( (eta(x^2 + A)^5 / eta(x^4 + A))^2 + 8 * x * (eta(x^4 + A)^5 / eta(x^2 + A))^2, n))};

Formula

Expansion of q^(-1/2) * ((eta(q^2)^5 / eta(q^4))^2 + 8 * (eta(q^4)^5 / eta(q^2))^2) in powers of q.
Expansion of q^(-1/2) * (eta(q^2)^12 + 8 * eta(q^4)^12) / ( eta(q^2) * eta(q^4) )^2 in powers of q.
a(n) = b(2*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = b(p) * b(p^(e-1)) - p^3 * b(p^(e-2)) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 8^2 (t / i)^4 f(t) where q = exp(2 Pi i t).
a(2*n) = A227695(n). a(2*n + 1) = 8 * A227317(n).
If F(x) is the g.f. for A002171, then A(x) * F(x^2) = B(x) the g.f. for A227239. - Michael Somos, Jan 08 2015

A258739 Expansion of (f(-x)^3 / f(-x^2))^6 - 64 * x * (f(-x^2)^3 / f(-x))^6 in powers of x where f() is a Ramanujan theta function.

Original entry on oeis.org

1, -82, -243, -1194, 2242, 0, 3599, 2950, 0, -12242, -20950, 19926, -16807, 7294, 0, 18950, 97908, 0, -88806, 0, 59049, -183844, 51050, 0, -92142, -98002, 0, 246486, 118706, 290142, -161051, -38868, 0, 0, 75658, 0, -241900, 47614, -544806, -493658, 0, 0
Offset: 0

Views

Author

Michael Somos, Jun 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is a member of an infinite family of integer weight modular forms. g_1 = A008441, g_2 = A002171, g_3 = A000729, g_4 = A215601, g_5 = A215472.
Denoted by g_6(q) in Cynk and Hulek on page 8 as a level 32 cusp form of weight 6.

Examples

			G.f. = 1 - 82*x - 243*x^2 - 1194*x^3 + 2242*x^4 + 3599*x^6 + 2950*x^7 + ...
G.f. = q - 82*q^5 - 243*q^9 - 1194*q^13 + 2242*q^17 + 3599*q^25 + 2950*q^29 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(32), 6), 165); A[1]  - 82*A[5] - 243*A[9] - 1194*A[13] + 2242*A[16];
  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x]^3 / QPochhammer[ x^2])^6 - 64 x (QPochhammer[ x^2]^3 / QPochhammer[ x])^6, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^2 + A))^6 - 64 * x * (eta(x^2 + A)^3 / eta(x + A))^6, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if(n<0, 0, n = 4*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if(p==2, 0, p%4==3, if(e%2, 0, (-p)^(5*e/2)), y = -sum(i=0, p-1, kronecker(i^3-i, p)); a0=2; a1=y; for(i=2, 5, x=y*a1 -p*a0; a0=a1; a1=x); y=a1; a0=1; a1=y; for(i=2, e, x=y*a1 -p^5*a0; a0=a1; a1=x); a1)))};
    

Formula

Expansion of q^(-1/4) * ((eta(-q)^3 / eta(-q^2))^6 - 64 * (eta(-q^2) / eta(-q))^6) in powers of q.
a(n) = b(4*n + 1) where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 * p^(5*e/2) if p == 3 (mod 4), b(p^e) = b(p) * b(p^(e-1)) - p^4 * b(p^(e-2)) if p == 1 (mod 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = -(32^3) (t/i)^6 f(t) where q = exp(2 Pi i t).

A261403 Coefficients of an example of a modular form of weight 2 for the group Gamma_0(32).

Original entry on oeis.org

1, 12, 4, 0, 0, -24, -16, 0, -8, -36, 24, 0, 0, 72, -32, 0, 24, 24, 52, 0, 0, 0, -48, 0, -32, -12, 56, 0, 0, -120, -96, 0, 24, 0, 72, 0, 0, -24, -80, 0, -48, 120, 128, 0, 0, 72, -96, 0, 96, -84, 124, 0, 0, 168, -160, 0, -64, 0, 120, 0, 0, -120, -128, 0, 24, -144, 192, 0, 0, 0, -192
Offset: 0

Views

Author

N. J. A. Sloane, Aug 20 2015

Keywords

Comments

This is a particular member of an eight-dimensional vector space.

Crossrefs

Cf. A002171.

Programs

  • Sage
    def a(n):
        B = ModularForms(Gamma0(32),2).basis()
        f = B[1] + 12*B[0] + 4*B[3] - 16*B[6] - 8*B[7]
        return f.coefficient(n)  # Robin Visser, Dec 12 2023

Extensions

More terms from Robin Visser, Dec 12 2023

A319456 a(n) = [x^n] Product_{k>=1} ((1 - x^k)*(1 - x^(2*k)))^n.

Original entry on oeis.org

1, -1, -3, 14, -11, -81, 282, -57, -2043, 5405, 2417, -46476, 94522, 110512, -943407, 1505289, 2807589, -16888311, 23645199, 46006542, -265972791, 472882620, 187884672, -3981273597, 14234579226, -19187383356, -78662039004, 502118911904, -847583768679, -2627514175002
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 19 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 - x^k) (1 - x^(2 k)))^n , {k, 1, n}], {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[(QPochhammer[x] QPochhammer[x^2])^n, {x, 0, n}], {n, 0, 29}]
    Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - 4 DivisorSigma[1, k]) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 29}]

Formula

a(n) = [x^n] Product_{k>=1} (1 - x^(2*k))^(2*n)/(1 + x^k)^n.
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(2*k) - 4*sigma(k))*x^k/k).
Previous Showing 11-16 of 16 results.