cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 218 results. Next

A293327 Greatest integer k such that k/2^n < sqrt(1/3).

Original entry on oeis.org

0, 1, 2, 4, 9, 18, 36, 73, 147, 295, 591, 1182, 2364, 4729, 9459, 18918, 37837, 75674, 151348, 302697, 605395, 1210791, 2421582, 4843165, 9686330, 19372660, 38745320, 77490641, 154981282, 309962565, 619925131, 1239850262, 2479700524, 4959401049, 9918802098
Offset: 0

Views

Author

Clark Kimberling, Oct 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = Sqrt[1/3];
    Table[Floor[r*2^n], {n, 0, z}];   (* A293327 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293328 *)
    Table[Round[r*2^n], {n, 0, z}];   (* A293329 *)

Formula

a(n) = floor(r*2^n), where r = sqrt(1/3).
a(n) = A293328(n) - 1.

Extensions

Definition and formula corrected by Clark Kimberling, Dec 26 2022

A293329 The integer k that minimizes |k/2^n - sqrt(1/3)|.

Original entry on oeis.org

1, 1, 2, 5, 9, 18, 37, 74, 148, 296, 591, 1182, 2365, 4730, 9459, 18919, 37837, 75674, 151349, 302698, 605396, 1210791, 2421583, 4843165, 9686330, 19372660, 38745321, 77490641, 154981283, 309962566, 619925131, 1239850262, 2479700525, 4959401049, 9918802098
Offset: 0

Views

Author

Clark Kimberling, Oct 10 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = Sqrt[1/3];
    Table[Floor[r*2^n], {n, 0, z}];   (* A293327 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293328 *)
    Table[Round[r*2^n], {n, 0, z}]; (* A293329 *)

Formula

a(n) = floor(1/2 + r*2^n), where r = sqrt(1/3).
a(n) = A293327(n) if (fractional part of r*2^n) < 1/2, else a(n) = A293328(n).

A354129 Decimal expansion of 7 + 4*sqrt(3).

Original entry on oeis.org

1, 3, 9, 2, 8, 2, 0, 3, 2, 3, 0, 2, 7, 5, 5, 0, 9, 1, 7, 4, 1, 0, 9, 7, 8, 5, 3, 6, 6, 0, 2, 3, 4, 8, 9, 4, 6, 7, 7, 7, 1, 2, 2, 1, 0, 1, 5, 2, 4, 1, 5, 2, 2, 5, 1, 2, 2, 2, 3, 2, 2, 7, 9, 1, 7, 8, 0, 7, 7, 3, 2, 0, 6, 7, 6, 3, 5, 2, 0, 0, 1, 4, 8, 3, 2, 4, 5, 8, 4, 7, 4, 7
Offset: 2

Views

Author

Stefano Spezia, May 18 2022

Keywords

Comments

The largest root of x^2 - 14*x + 1 = 0.
Apart from leading digits the same as A010502. - R. J. Mathar, May 24 2022

Examples

			13.92820323027550917410978536602...
		

Crossrefs

Cf. A002194, A010502, A019973 (square root), A354128 (multiplicative inverse).

Programs

  • Mathematica
    First[RealDigits[N[7+4Sqrt[3],92]]]

Formula

Equals (1 + sqrt(3))^4 / 4. - Vaclav Kotesovec, May 18 2022
Equals (2 + sqrt(3))^2 = A019973^2. - Jianing Song, May 27 2022
Equals exp(arccosh(7)). - Amiram Eldar, Jul 06 2023

A374948 Decimal expansion of the Euclidean length of the minimum Steiner tree joining all the vertices of a unit cube.

Original entry on oeis.org

6, 1, 9, 6, 1, 5, 2, 4, 2, 2, 7, 0, 6, 6, 3, 1, 8, 8, 0, 5, 8, 2, 3, 3, 9, 0, 2, 4, 5, 1, 7, 6, 1, 7, 1, 0, 0, 8, 2, 8, 4, 1, 5, 7, 6, 1, 4, 3, 1, 1, 4, 1, 8, 8, 4, 1, 6, 7, 4, 2, 0, 9, 3, 8, 3, 5, 5, 7, 9, 9, 0, 5, 0, 7, 2, 6, 4, 0, 0, 1, 1, 1, 2, 4, 3, 4, 3
Offset: 1

Views

Author

Marco RipĂ , Jul 24 2024

Keywords

Comments

The 1994 Bridge's paper entitled "Minimal Steiner Trees for Three Dimensional Networks" (see Links) suggested an optimal strategy to solve the minimum Steiner tree problem for the unit cube {0,1}^3, and the total length of the provided Steiner Tree is 1 + 3*sqrt(3).
Also the surface area of a gyroelongated square pyramid (Johnson solid J_10) with unit edges. - Paolo Xausa, Aug 04 2025

Examples

			6.1961524227066318805823390245176171008284157614311418841674209383...
		

Crossrefs

Essentially the same as A178809, A176532 and A010482.

Programs

  • Mathematica
    RealDigits[3Sqrt[3]+1,10,87][[1]] (* Stefano Spezia, Jul 25 2024 *)

Formula

Equals 3*sqrt(3) + 1.
Equals A010482(n) for any n >= 2 and a(1) = A010482(1) + 1.

A376859 Decimal expansion of Product_{k=1..4} Gamma(k/3).

Original entry on oeis.org

3, 2, 3, 9, 3, 7, 1, 3, 4, 0, 7, 1, 6, 9, 7, 3, 2, 0, 6, 1, 8, 0, 0, 6, 6, 0, 1, 1, 6, 3, 0, 7, 9, 4, 8, 9, 8, 0, 1, 2, 1, 3, 7, 8, 2, 4, 5, 5, 4, 5, 1, 2, 5, 1, 0, 9, 1, 4, 4, 2, 6, 6, 9, 4, 0, 0, 1, 7, 7, 7, 1, 2, 5, 6, 9, 6, 7, 7, 0, 0, 6, 5, 8, 8, 3, 9, 0, 1, 1, 8
Offset: 1

Views

Author

Paolo Xausa, Oct 09 2024

Keywords

Examples

			3.23937134071697320618006601163079489801213782...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376911 (m = 5 and m = 6), A376912 (m = 7), A376913 (m = 8).

Programs

  • Mathematica
    First[RealDigits[2*Pi*Gamma[4/3]/Sqrt[3], 10, 100]]

Formula

Equals 2*Pi*Gamma(1/3)/(3*sqrt(3)) = 2*Pi*Gamma(4/3)/sqrt(3) = A186706*A202623 (cf. eq. 86 in Weisstein link).

A376913 Decimal expansion of Product_{k=1..8} Gamma(k/3).

Original entry on oeis.org

5, 2, 3, 8, 6, 5, 9, 6, 2, 5, 1, 8, 5, 6, 5, 8, 4, 1, 0, 3, 2, 9, 2, 3, 2, 0, 9, 9, 9, 7, 6, 3, 6, 6, 2, 6, 8, 1, 3, 5, 9, 7, 7, 3, 9, 9, 2, 1, 5, 7, 5, 6, 6, 5, 0, 5, 6, 3, 4, 8, 0, 9, 7, 6, 2, 9, 1, 0, 5, 5, 8, 0, 4, 6, 4, 1, 9, 1, 5, 1, 8, 2, 3, 1, 9, 1, 6, 8, 2, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 11 2024

Keywords

Examples

			5.2386596251856584103292320999763662681359773992...
		

Crossrefs

Other identities for Product_{k=1..m} Gamma(k/3): A073005 (m = 1), A186706 (m = 2 and m = 3), A376859 (m = 4), A376911 (m = 5 and m = 6), A376912 (m = 7).

Programs

  • Mathematica
    First[RealDigits[640*Pi^3/(2187*Sqrt[3]), 10, 100]]

Formula

Equals 640*Pi^3/(2187*sqrt(3)) = 640*A091925/(3^7*A002194) (cf. eq. 90 in Weisstein link).

A377298 Decimal expansion of the surface area of a truncated cube with unit edge length.

Original entry on oeis.org

3, 2, 4, 3, 4, 6, 6, 4, 3, 6, 3, 6, 1, 4, 8, 9, 5, 1, 7, 2, 6, 7, 5, 1, 5, 7, 3, 7, 3, 5, 2, 8, 1, 2, 1, 6, 7, 6, 7, 2, 1, 6, 7, 3, 0, 1, 2, 1, 4, 4, 1, 3, 8, 1, 3, 4, 2, 3, 1, 7, 7, 0, 8, 1, 4, 7, 9, 2, 6, 5, 5, 7, 7, 5, 3, 6, 2, 8, 8, 4, 5, 4, 0, 3, 6, 6, 9, 4, 2, 7
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			32.4346643636148951726751573735281216767216730121...
		

Crossrefs

Cf. A377299 (volume), A294968 (circumradius), A010503 (midradius - 1), A377296 (Dehn invariant, negated).

Programs

  • Mathematica
    First[RealDigits[2*(6 + Sqrt[72] + Sqrt[3]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedCube", "SurfaceArea"], 10, 100]]

Formula

Equals 2*(6 + 6*sqrt(2) + sqrt(3)) = 2*(6 + 2*A002193 + A002194) = 12 + 2*A010524 + A010469.

A377341 Decimal expansion of the surface area of a truncated octahedron with unit edge length.

Original entry on oeis.org

2, 6, 7, 8, 4, 6, 0, 9, 6, 9, 0, 8, 2, 6, 5, 2, 7, 5, 2, 2, 3, 2, 9, 3, 5, 6, 0, 9, 8, 0, 7, 0, 4, 6, 8, 4, 0, 3, 3, 1, 3, 6, 6, 3, 0, 4, 5, 7, 2, 4, 5, 6, 7, 5, 3, 6, 6, 6, 9, 6, 8, 3, 7, 5, 3, 4, 2, 3, 1, 9, 6, 2, 0, 2, 9, 0, 5, 6, 0, 0, 4, 4, 4, 9, 7, 3, 7, 5, 4, 2
Offset: 2

Views

Author

Paolo Xausa, Oct 25 2024

Keywords

Examples

			26.78460969082652752232935609807046840331366304572...
		

Crossrefs

Cf. A377342 (volume), A020797 (circumradius/10), A152623 (midradius).
Cf. A010469 (analogous for a regular octahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[6 + 12*Sqrt[3], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TruncatedOctahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 6 + 12*sqrt(3) = 6 + 12*A002194.

A377557 Decimal expansion of 2*Pi^3/(81*sqrt(3)) + 13*zeta(3)/27.

Original entry on oeis.org

1, 0, 2, 0, 7, 8, 0, 0, 4, 4, 4, 3, 3, 3, 6, 3, 1, 0, 2, 8, 2, 3, 2, 5, 4, 7, 3, 9, 9, 0, 3, 9, 8, 1, 8, 2, 5, 3, 5, 3, 4, 1, 0, 9, 3, 7, 5, 1, 9, 0, 6, 9, 6, 6, 9, 7, 3, 5, 7, 2, 0, 7, 5, 2, 5, 3, 9, 1, 4, 6, 5, 9, 9, 2, 6, 5, 6, 2, 7, 1, 5, 5, 4, 4, 9, 8, 0, 6, 7, 2, 0, 3, 4, 2, 6, 7, 6, 1, 3, 7
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.0207800444333631028232547399039818253534109375...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[2Pi^3/(81Sqrt[3])+13Zeta[3]/27,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(3*k + 1)^3 (see Finch).
Equals -psi''(1/3)/54 (see Shamos).
Equals hypergeom([1/3, 1/3, 1/3, 1], [4/3, 4/3, 4/3], 1). - R. J. Mathar, Jul 14 2025

A377560 Decimal expansion of Pi^3/(36*sqrt(3)) + 91*zeta(3)/216.

Original entry on oeis.org

1, 0, 0, 3, 6, 8, 5, 5, 1, 5, 3, 4, 7, 9, 5, 2, 6, 9, 7, 0, 6, 3, 2, 3, 0, 1, 3, 7, 0, 2, 4, 8, 6, 0, 5, 7, 3, 1, 5, 2, 7, 2, 7, 8, 4, 3, 5, 9, 3, 8, 9, 3, 3, 2, 7, 8, 6, 6, 5, 7, 9, 0, 8, 5, 3, 1, 5, 3, 9, 2, 7, 3, 2, 7, 3, 6, 5, 8, 9, 1, 5, 9, 3, 9, 5, 6, 2, 5, 8, 3, 4, 8, 5, 8, 4, 6, 1, 0, 4, 0
Offset: 1

Views

Author

Stefano Spezia, Nov 01 2024

Keywords

Examples

			1.00368551534795269706323013702486057315272784359...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 42.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/(36*Sqrt[3])+91*Zeta[3]/216,10,100][[1]]

Formula

Equals Sum_{k>=0} 1/(6*k + 1)^3 (see Finch).
Equals -psi''(1/6)/432 (see Shamos).
Previous Showing 101-110 of 218 results. Next