cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 56 results. Next

A322110 Number of non-isomorphic connected multiset partitions of weight n that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 3, 6, 15, 32, 86, 216, 628, 1836, 5822
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(1) = 1 through a(5) = 32 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}        {{1,1,2,2,2}}
         {{1},{1}}  {{1,2,3}}      {{1,2,2,2}}        {{1,2,2,2,2}}
                    {{1},{1,1}}    {{1,2,3,3}}        {{1,2,2,3,3}}
                    {{2},{1,2}}    {{1,2,3,4}}        {{1,2,3,3,3}}
                    {{1},{1},{1}}  {{1},{1,1,1}}      {{1,2,3,4,4}}
                                   {{1,1},{1,1}}      {{1,2,3,4,5}}
                                   {{1},{1,2,2}}      {{1},{1,1,1,1}}
                                   {{1,2},{1,2}}      {{1,1},{1,1,1}}
                                   {{2},{1,2,2}}      {{1},{1,2,2,2}}
                                   {{3},{1,2,3}}      {{1,2},{1,2,2}}
                                   {{1},{1},{1,1}}    {{2},{1,1,2,2}}
                                   {{1},{2},{1,2}}    {{2},{1,2,2,2}}
                                   {{2},{2},{1,2}}    {{2},{1,2,3,3}}
                                   {{1},{1},{1},{1}}  {{2,2},{1,2,2}}
                                                      {{2,3},{1,2,3}}
                                                      {{3},{1,2,3,3}}
                                                      {{4},{1,2,3,4}}
                                                      {{1},{1},{1,1,1}}
                                                      {{1},{1,1},{1,1}}
                                                      {{1},{1},{1,2,2}}
                                                      {{1},{2},{1,2,2}}
                                                      {{2},{1,2},{1,2}}
                                                      {{2},{1,2},{2,2}}
                                                      {{2},{2},{1,2,2}}
                                                      {{2},{3},{1,2,3}}
                                                      {{3},{1,3},{2,3}}
                                                      {{3},{3},{1,2,3}}
                                                      {{1},{1},{1},{1,1}}
                                                      {{1},{2},{2},{1,2}}
                                                      {{2},{2},{2},{1,2}}
                                                      {{1},{1},{1},{1},{1}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229.
The weak-antichain case is counted by A322117.
The case without singletons is counted by A322118.

Extensions

Corrected by Gus Wiseman, Jan 27 2021

A322118 Number of non-isomorphic connected multiset partitions of weight n with no singletons that cannot be capped by a tree.

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 29, 55, 155, 386, 1171
Offset: 0

Views

Author

Gus Wiseman, Nov 26 2018

Keywords

Comments

The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021

Examples

			The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(2) = 2 through a(6) = 29 multiset partitions:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}    {{1,1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}    {{1,1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}    {{1,1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}    {{1,1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}    {{1,2,2,2,2,2}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}    {{1,2,2,3,3,3}}
                      {{1,2},{1,2}}  {{1,2,3,4,5}}    {{1,2,3,3,3,3}}
                                     {{1,1},{1,1,1}}  {{1,2,3,3,4,4}}
                                     {{1,2},{1,2,2}}  {{1,2,3,4,4,4}}
                                     {{2,2},{1,2,2}}  {{1,2,3,4,5,5}}
                                     {{2,3},{1,2,3}}  {{1,2,3,4,5,6}}
                                                      {{1,1},{1,1,1,1}}
                                                      {{1,1,1},{1,1,1}}
                                                      {{1,1,2},{1,2,2}}
                                                      {{1,2},{1,1,2,2}}
                                                      {{1,2},{1,2,2,2}}
                                                      {{1,2},{1,2,3,3}}
                                                      {{1,2,2},{1,2,2}}
                                                      {{1,2,3},{1,2,3}}
                                                      {{1,2,3},{2,3,3}}
                                                      {{1,3,4},{2,3,4}}
                                                      {{2,2},{1,1,2,2}}
                                                      {{2,2},{1,2,2,2}}
                                                      {{2,3},{1,2,3,3}}
                                                      {{3,3},{1,2,3,3}}
                                                      {{3,4},{1,2,3,4}}
                                                      {{1,1},{1,1},{1,1}}
                                                      {{1,2},{1,2},{1,2}}
                                                      {{1,2},{1,3},{2,3}}
		

Crossrefs

Non-isomorphic tree multiset partitions are counted by A321229, or A321231 without singletons.
The version with singletons is A322110.
The weak-antichain case is counted by A322138, or A322117 with singletons.

Extensions

Definition corrected by Gus Wiseman, Feb 05 2021

A322139 Number of labeled 2-connected simple graphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 0, 1, 3, 18, 131, 1180, 12570, 154535, 2151439, 33431046, 573197723, 10743619285, 218447494812, 4787255999220, 112454930390211, 2818138438707516, 75031660452368001, 2114705500316025737, 62890323682634277951, 1967901134191778583146, 64623905086814216468839
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, (1 + y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Formula

a(n) = Sum_{i=3..n} A123534(i, n). - Andrew Howroyd, Nov 30 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A327805 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 2, 1, 0, 11, 6, 3, 1, 0, 34, 21, 10, 3, 1, 0, 156, 112, 56, 17, 4, 1, 0, 1044, 853, 468, 136, 25, 4, 1, 0, 12346, 11117, 7123, 2388, 384, 39, 5, 1, 0, 274668, 261080, 194066, 80890, 14480, 1051, 59, 5, 1, 0, 12005168, 11716571, 9743542, 5114079, 1211735, 102630, 3211, 87, 6, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
   1
   1  0
   2  1  0
   4  2  1  0
  11  6  3  1  0
  34 21 10  3  1  0
		

Crossrefs

Row-wise partial sums of A259862.
The labeled version is A327363.
The covering case is A327365, from which this sequence differs only in the k = 0 column.
Column k = 0 is A000088 (graphs).
Column k = 1 is A001349 (connected graphs), if we assume A001349(0) = A001349(1) = 0.
Column k = 2 is A002218 (2-connected graphs), if we assume A002218(2) = 0.
The triangle for vertex-connectivity exactly k is A259862.

Formula

T(n,k) = Sum_{j=k..n} A259862(n,j).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 26 2020

A086217 Number of 5-connected graphs on n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 4, 39, 1051, 102630, 22331311, 8491843895
Offset: 1

Views

Author

Eric W. Weisstein, Jul 12 2003

Keywords

Crossrefs

Formula

a(n) = A324240(n) + A324234(n). - Andrew Howroyd, Sep 04 2019
a(n) = A086216(n) - A052445(n). - Jean-François Alcover, Sep 13 2019, after Andrew Howroyd in A086216

Extensions

Offset corrected by Travis Hoppe, Apr 11 2014
a(10) from the Encyclopedia of Finite Graphs (Travis Hoppe and Anna Petrone), Apr 11 2014
a(11) by Jens M. Schmidt, Feb 20 2019
a(12) added by Georg Grasegger, Jan 07 2025

A317671 Regular triangle where T(n,k) is the number of labeled connected graphs on n + 1 vertices with k maximal blobs (2-connected components).

Original entry on oeis.org

1, 1, 3, 10, 12, 16, 238, 215, 150, 125, 11368, 7740, 4140, 2160, 1296, 1014888, 509446, 205065, 84035, 36015, 16807, 166537616, 59409952, 17393152, 5393920, 1863680, 688128, 262144, 50680432112, 12321597708, 2516756508, 563570217, 148803480, 45467730
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Examples

			Triangle begins:
        1
        1       3
       10      12      16
      238     215     150     125
    11368    7740    4140    2160    1296
  1014888  509446  205065   84035   36015   16807
		

Crossrefs

Row sums are A001187. First column is A013922. Last column is A000272.

Programs

  • Mathematica
    blg={0,1,1,10,238,11368,1014888,166537616,50680432112,29107809374336} (*A013922*);
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Sum[n^(k-1)*Product[blg[[Length[s]+1]],{s,spn}],{spn,Select[sps[Range[n-1]],Length[#]==k&]}],{n,Length[blg]},{k,n-1}]

A322138 Number of non-isomorphic weight-n blobs (2-connected weak antichains) of multisets with no singletons.

Original entry on oeis.org

1, 0, 2, 3, 7, 7, 20, 26, 78, 184, 553
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 2 through a(7) = 26 blobs:
  {{11}}  {{111}}  {{1111}}    {{11111}}  {{111111}}      {{1111111}}
  {{12}}  {{122}}  {{1122}}    {{11222}}  {{111222}}      {{1112222}}
          {{123}}  {{1222}}    {{12222}}  {{112222}}      {{1122222}}
                   {{1233}}    {{12233}}  {{112233}}      {{1122333}}
                   {{1234}}    {{12333}}  {{122222}}      {{1222222}}
                   {{11}{11}}  {{12344}}  {{122333}}      {{1222333}}
                   {{12}{12}}  {{12345}}  {{123333}}      {{1223333}}
                                          {{123344}}      {{1223344}}
                                          {{123444}}      {{1233333}}
                                          {{123455}}      {{1233444}}
                                          {{123456}}      {{1234444}}
                                          {{111}{111}}    {{1234455}}
                                          {{112}{122}}    {{1234555}}
                                          {{122}{122}}    {{1234566}}
                                          {{123}{123}}    {{1234567}}
                                          {{123}{233}}    {{112}{1222}}
                                          {{134}{234}}    {{122}{1233}}
                                          {{11}{11}{11}}  {{123}{2233}}
                                          {{12}{12}{12}}  {{123}{2333}}
                                          {{12}{13}{23}}  {{123}{2344}}
                                                          {{134}{2344}}
                                                          {{145}{2345}}
                                                          {{223}{1233}}
                                                          {{344}{1234}}
                                                          {{12}{13}{233}}
                                                          {{13}{14}{234}}
		

Crossrefs

A289471 Number of planar strictly 2-connected graphs on n edges.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 15, 39, 106, 316, 1030, 3553, 13006, 49780, 197281, 804649, 3358885, 14289507, 61769577
Offset: 1

Views

Author

Ed Pegg Jr, Jul 06 2017

Keywords

Crossrefs

Formula

a(n) = A343869(n) - A002840(n). - Andrew Howroyd, May 04 2021

Extensions

a(12)-a(13) corrected and a(14)-a(20) from Andrew Howroyd, May 04 2021

A322140 Number of labeled 2-connected multigraphs with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 1, 1, 2, 7, 37, 262, 2312, 24338, 296928, 4112957, 63692909, 1089526922, 20389411551, 414146189901, 9070116944468, 212983762029683, 5336570227705763, 142083405456873290, 4004953714929148655, 119128974685786590410, 3728639072095285867881
Offset: 0

Views

Author

Gus Wiseman, Nov 27 2018

Keywords

Comments

We consider a single edge to be 2-connected, so a(1) = 1.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(1 + vecsum(Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 1/(1 - y + O(y*y^n))^binomial(k, 2) * x^k / k!) + O(x*x^n)))))))))} \\ Andrew Howroyd, Nov 29 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 29 2018

A324234 Number of simple non-isomorphic n-vertex graphs of connectivity 5.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 34, 992, 99419, 21500415, 8004834513
Offset: 1

Views

Author

Jens M. Schmidt, Feb 19 2019

Keywords

Crossrefs

Column k=5 of A259862.

Extensions

a(12) added by Brendan McKay, Sep 01 2023
Previous Showing 31-40 of 56 results. Next