A345246
Number of 2-connected unlabeled simple graphs with no triangles.
Original entry on oeis.org
1, 2, 6, 16, 78, 415, 3374, 35860, 524386, 10193061, 263036202, 8948113645, 400280198048
Offset: 4
For n=4 the only example is a 4-cycle.
Cf.
A002218 all 2-connected graphs.
Cf.
A024607 all connected triangle-free graphs.
A361367
Number of weakly 2-connected simple digraphs with n unlabeled nodes.
Original entry on oeis.org
7, 129, 7447, 1399245, 853468061, 1774125803324, 12983268697759210, 340896057593147232397, 32512334188761655225275067, 11365639780174824680535568799361, 14668665138188644335253106665956458513, 70315069858161131939222463684374769308619684
Offset: 3
- M. Kirchweger, M. Scheucher, and S. Szeider, SAT-Based Generation of Planar Graphs, in preparation.
-
\\ See links in A339645 for combinatorial species functions.
edges(v) = {2*sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]-1)}
graphsCycleIndex(n)={my(s=0); forpart(p=n, s+=permcount(p) * 2^edges(p) * sMonomial(p)); s/n!}
graphsSeries(n)={sum(k=0, n, graphsCycleIndex(k)*x^k) + O(x*x^n)}
cycleIndexSeries(n)={my(g=graphsSeries(n), gc=sLog(g), gcr=sPoint(gc)); intformal(x*sSolve( sLog( gcr/(x*sv(1)) ), gcr ), sv(1)) + sSolve(subst(gc, sv(1), 0), gcr)}
{ my(N=15); Vec(-2*x^2 + OgfSeries(cycleIndexSeries(N))) } \\ Andrew Howroyd, Mar 09 2023
A366755
Number of 1-tough unlabeled graphs on n vertices.
Original entry on oeis.org
1, 1, 1, 3, 8, 48, 387, 6240, 178176
Offset: 1
For n = 5, all but two of the A002218(5) = 10 2-connected graphs are 1-tough, so a(5) = 8. The exceptions are the complete bipartite graph K_{2,3} and the complete tripartite graph K_{1,1,3}. To see that these graphs are not 1-tough, note that, in both cases, two vertices can be removed resulting in a graph with three components (isolated vertices).
A377569
Number of simple graphs such that each connected component is nonseparable and the number of vertices minus the number of connected components equals n.
Original entry on oeis.org
1, 1, 2, 5, 16, 75, 560, 7772, 202546, 9955274, 911146844, 154541913254, 48588413940171, 28410569347709449, 31024350279787141361, 63532688288261802284578, 244915643061880269492533777, 1783405573307429828266152750816, 24605670701967180148649252153837623
Offset: 0
Euler transform of
A002218, shifted by 1.
A054381
Number of n-node connected planar graphs with minimum degree at least 2.
Original entry on oeis.org
0, 0, 1, 3, 10, 49, 332, 3178, 39267, 578786, 9502259
Offset: 1
A318188
Number of nonisomorphic 2-connected circle graphs of order n.
Original entry on oeis.org
0, 1, 1, 3, 10, 54, 407, 4630, 68425, 1211637
Offset: 1
The 3 circle graphs with n = 4 vertices which are 2-connected are K_4, the square and the square with one diagonal.
- L. E. Danielsen, Database of Circle Graphs
- L. E. Danielsen and M. G. Parker, Interlace polynomials: Enumeration, unimodality, and connections to codes, arXiv:0804.2576 [math.CO], 2008-2009.
- L. E. Danielsen and M. G. Parker, Interlace polynomials: Enumeration, unimodality, and connections to codes, Discrete Appl. Math. 158(6), pp. 636-648, 2010.