A002229
Primitive roots that go with the primes in A002230.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 19, 21, 23, 31, 37, 38, 44, 69, 73, 94, 97, 101, 107, 111, 113, 127, 137, 151, 164, 179, 194, 197, 227, 229, 263, 281, 293, 335, 347, 359, 401, 417
Offset: 1
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLIV.
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Kevin J. McGown and Jonathan P. Sorenson, Computation of the least primitive root, arXiv:2206.14193 [math.NT], 2022.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
-
s = {1}; rm = 1; Do[p = Prime[k]; r = PrimitiveRoot[p]; If[r > rm, Print[r]; AppendTo[s, r]; rm = r], {k, 10^6}]; s (* Jean-François Alcover, Apr 05 2011 *)
-
from sympy import isprime, primitive_root
from itertools import count, islice
def f(n): return 0 if not isprime(n) or (r:=primitive_root(n))==None else r
def agen(r=0): yield from ((m, r:=f(m))[1] for m in count(1) if f(m) > r)
print(list(islice(agen(), 15))) # Michael S. Branicky, Feb 13 2023
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
a(35)-a(38), from McGown and Sorenson, added by
Michel Marcus, Jun 29 2022
A060363
Smallest prime p such that first n primes (p_1=2, ..., p_n) are 13th power residues mod p.
Original entry on oeis.org
4421, 44851, 1194961, 2367691, 138609979, 820015717, 72942989237, 72942989237
Offset: 1
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XXIV.
A060364
Smallest prime p such that first n primes (p_1=2, ..., p_n) are 17th power residues mod p.
Original entry on oeis.org
1429, 6563, 1458601, 55981069, 250844317, 4926746609, 225578509837, 1118584849397, 4143277702703
Offset: 1
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XXIV.
More terms from
Don Reble, Oct 12 2001. Search limit 10^11. Corrected Nov 14 2006
A147969
Smallest prime p modulo which numbers 1,2,...,n are quadratic residues.
Original entry on oeis.org
2, 7, 23, 23, 71, 71, 311, 311, 311, 311, 479, 479, 1559, 1559, 1559, 1559, 5711, 5711, 10559, 10559, 10559, 10559, 18191, 18191, 18191, 18191, 18191, 18191, 31391, 31391, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791, 366791
Offset: 1
-
a(n)=forprime(p=2,default(primelimit),forprime(i=2,n, if(kronecker(i,p)<1,next(2)));return(p)) \\ Charles R Greathouse IV, Apr 06 2012
A147970
Primes corresponding to the records in the sequence of smallest positive quadratic nonresidues (A053760).
Original entry on oeis.org
2, 7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 131486759, 2929911599, 7979490791, 23616331489, 89206899239, 121560956039, 196265095009, 513928659191, 5528920734431, 8402847753431, 70864718555231
Offset: 1
A124882
Maximum number of distinct squares in arithmetic progression modulo prime(n).
Original entry on oeis.org
2, 2, 3, 3, 3, 4, 5, 4, 5, 4, 4, 4, 5, 5, 5, 6, 5, 6, 6, 7, 9, 6, 7, 6, 9, 7, 7, 6, 10, 5, 7, 8, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 7, 9, 7, 6, 7, 7, 7, 6, 7, 7, 13, 7, 6, 7, 9, 7, 10, 7, 9, 9, 7, 11, 9, 7, 8, 9, 8, 6, 8, 8, 9, 6, 8, 8, 8, 8, 9, 13, 8, 12, 7, 9, 10, 8, 9, 9, 8, 8, 11, 13, 8, 8, 10, 8, 9, 8, 10, 10
Offset: 1
Consider numbers modulo 13, the 6th prime. The squares mod 13 are 0,1,3,4,9,10,12. Exhaustive search finds that the four numbers 1,9,17,25 are in AP and are also distinct squares modulo 13. Hence a(6)=4. There are two other APs of squares having the same length: 4,10,16,22 and 10,12,14,16.
From _Travis Scott_, May 28 2022: (Start)
Taking the same example on Z/13Z but with no information other than the residues < 13/2 (0,1,3,4) and the polarity of 13 (+) we find that the string RRNRRNN adjusted to (2k-1)RRR N RR NNNN(2k) has no longer run in any color than NNNN so a(6)=4. We can also use the N values of that run to show a maximal AP of squares mod 13 starting from every residue:
2 * 5,6,7,8 = 10,12, 1, 3 = 10,12,14,16
5 * 5,6,7,8 = 12, 4, 9, 1 = 12,17,22,27
6 * 5,6,7,8 = 4,10, 3, 9 = 4,10,16,22
7 * 5,6,7,8 = 9, 3,10, 4 = 9,16,23,30
8 * 5,6,7,8 = 1, 9, 4,12 = 1, 9,17,25
11 * 5,6,7,8 = 3, 1,12,10 = 3,14,25,36. (End)
-
t=Table[p=Prime[n]; sqs=Sort[Mod[Range[0,(p-1)/2]^2,p]]; kMx=0; Do[If[i!=j, df=sqs[[j]]-sqs[[i]]; k=2; While[MemberQ[sqs, Mod[sqs[[i]]+k*df,p]], k++ ]; k--; If[k>kMx, kMx=k]], {i,Length[sqs]}, {j,Length[sqs]}]; kMx+1, {n,2,PrimePi[617]}]; Join[{2},t]
(* alternate program *)
Qres1C=Compile[{{x,_Integer,1},{q,_Integer,0}},Module[{s=0,z=0,i=2},While[x[[i]]==x[[i-1]],i++];z=2i-1;s=i;While[i"C",RuntimeAttributes->{Listable},Parallelization->True];
QresIC=Compile[{{x,_Integer,1},{q,_Integer,0}},Module[{s=2,z=2},Do[If[x[[i]]==x[[i-1]],s++,If[s>z,z=s];s=1],{i,2,q}];If[s>z,z=s];z],CompilationTarget->"C",RuntimeAttributes->{Listable},Parallelization->True];
{2}~Join~Table[If[Mod[p,4]==1,Qres1C[#,(p+1)/2],QresIC[#,(p-1)/2]]&@Unitize[PowerMod[Range[(p-1)/2],(p-1)/2,p]-1],{p,Prime@Range[2,6543]}]
(* Travis Scott, May 28 2022 Accelerated by symmetry per comment. *)
A147972
Smallest prime p modulo which the first n primes are nonzero quadratic residues.
Original entry on oeis.org
7, 23, 71, 311, 479, 1559, 5711, 10559, 18191, 31391, 366791, 366791, 366791, 3818929, 9257329, 22000801, 36415991, 48473881, 120293879, 120293879, 131486759, 131486759, 2929911599, 2929911599, 7979490791, 23616331489, 23616331489, 89206899239, 121560956039, 196265095009, 196265095009, 513928659191, 5528920734431, 8402847753431, 8402847753431, 8402847753431, 70864718555231
Offset: 1
-
(*version 7.0*)m=1;P=7;Lst={p};While[m<25,m++;S=Prime[Range[m]];While[MemberQ[JacobiSymbol[S,p],-1],p=NextPrime[p]];Lst=Append[Lst,P]];Lst (* Emmanuel Vantieghem, Jan 31 2012 *)
-
t=2;forprime(p=2,1e9,forprime(q=2,t,if(kronecker(q,p)<1,next(2)));print1(p", ");t=nextprime(t+1);p--) \\ Charles R Greathouse IV, Jan 31 2012
A029932
Primes with record values of the least positive prime primitive root.
Original entry on oeis.org
3, 7, 23, 41, 109, 191, 271, 2791, 11971, 31771, 190321, 2080597, 3545281, 4022911, 73189117, 137568061, 443571241, 565822531, 1160260711, 1622723341, 31552100581, 81651092041, 96736641541, 1867622877121, 5000346134911
Offset: 1
Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
- R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLV.
- Tomás Oliveira e Silva, Counts of least primitive roots of prime numbers (Artin's conjecture)
- Tomás Oliveira e Silva, Least prime primitive roots
- A. Paszkiewicz and A. Schinzel, On the least prime primitive root modulo a prime, Math. Comp. 71 (2002), no. 239, 1307-1321.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
- Index entries for primes by primitive root
-
(* This program is not suitable for computing more than a dozen terms. *) max = 10^8; pprQ[r_, p_] := Union[Table[PowerMod[r, i, p], {i, 1, p+1}]] == coprimes; ppr[p_] := With[{spr = PrimitiveRoot[p]}, If[PrimeQ[spr], spr, coprimes = Select[Range[p-1], CoprimeQ[#, p]&]; For[r = NextPrime[ spr], True, r = NextPrime[r], If[pprQ[r, p], Return[r]]]]]; Reap[ For[ record=1; p=3, p record, record = ppr1; Print["p = ", p, " ppr = ", record]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Feb 25 2016 *)
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 19 2008
A002231
Primitive roots that go with the primes in A029932.
Original entry on oeis.org
2, 3, 5, 7, 11, 19, 43, 53, 79, 107, 149, 151, 163, 211, 223, 263, 277, 307, 347, 349, 367, 383, 461, 479, 503
Offset: 1
- R. Osborn, Tables of All Primitive Roots of Odd Primes Less Than 1000, Univ. Texas Press, 1961.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots. Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968, p. XLV.
- R. K. Guy and N. J. A. Sloane, Correspondence, 1988.
- Tomás Oliveira e Silva, Counts of least primitive roots of prime numbers (Artin's conjecture)
- Tomás Oliveira e Silva, Least prime primitive roots
- A. Paszkiewicz and A. Schinzel, On the least prime primitive root modulo a prime, Math. Comp. 71 (2002), no. 239, 1307-1321.
- A. E. Western and J. C. P. Miller, Tables of Indices and Primitive Roots, Royal Society Mathematical Tables, Vol. 9, Cambridge Univ. Press, 1968 [Annotated scans of selected pages]
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 18 2008
Comments