cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 261 results. Next

A380514 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 67, 1537, 50021, 2107021, 108885295, 6665443457, 471522589417, 37843890892021, 3397250515809371, 337267132243022785, 36687625652474612557, 4339368321317331858557, 554467482301151809302151, 76112537023512618262963201, 11170667360636927554290623825, 1745500813880455301486766050917
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+2*k, k)/((2*n+2*k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+2*k,k)/((2*n+2*k) * (n-k-1)!) for n > 0.

A382034 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 9, 181, 5713, 246881, 13570081, 906180997, 71250724833, 6448375469665, 660286026034561, 75472025139452261, 9525947428687403473, 1315935073971181422721, 197485196722573989608289, 31993978774204625549549221, 5565216938342017912128576961, 1034506012356981473110554574145
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(4*n,k)/(n-k-1)! for n > 0.
Let F(x) be the e.g.f. of A377630. F(x) = log(A(x))/x = B(x*A(x))^4.
E.g.f.: A(x) = exp( Series_Reversion( x/(1 + x*exp(x))^4 ) ).

A153396 G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 5, 32, 228, 1726, 13587, 109923, 907499, 7609898, 64609346, 554108863, 4792190298, 41739160686, 365746143064, 3221723465187, 28509044813580, 253295607463902, 2258539046009268, 20203103111671575, 181242298665210280
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2009

Keywords

Examples

			G.f.: A(x) = F(x*G(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 228*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 74*x^3 + 545*x^4 + 4228*x^5 +...
G(x)^3*A(x)^2 = 1 + 5*x + 32*x^2 + 228*x^3 + 1726*x^4 + 13587*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[2k+1,k]/(2k+1) Binomial[4n-k,n-k]3 k/(4n-k), {k,0,n}],{n,20}]] (* Harvey P. Dale, Feb 09 2015 *)
  • PARI
    {a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}

Formula

a(n) = Sum_{k=0..n} C(2k+1,k)/(2k+1) * C(4n-k,n-k)*3k/(4n-k) for n>0 with a(0)=1.
G.f. satisfies: A(x) = 1 + x*G(x)^3*A(x)^2 where G(x) is the g.f. of A002293.
G.f. satisfies: A(x/F(x)^2) = F(x*F(x)) where F(x) is the g.f. of A000108.
G.f. satisfies: A(x/H(x)) = F(x*H(x)^2) where H(x) = 1 + x*H(x)^3 is the g.f. of A001764 and F(x) is the g.f. of A000108.
G.f. satisfies: A(-x*A(x)^9) = 1/A(x). - Alexander Burstein, Apr 14 2020
Recurrence: 243*(n-1)*n*(n+1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(147456*n^6 - 1998336*n^5 + 11209920*n^4 - 33294250*n^3 + 55173779*n^2 - 48321229*n + 17452260)*a(n) = 72*(n-1)*n*(3*n - 5)*(3*n - 4)*(127401984*n^9 - 2045067264*n^8 + 14240360448*n^7 - 56278911936*n^6 + 138595592064*n^5 - 219567715966*n^4 + 222542820712*n^3 - 138190518059*n^2 + 47259501167*n - 6683489400)*a(n-1) - 48*(n-1)*(16307453952*n^12 - 351459606528*n^11 + 3428587929600*n^10 - 20001961205760*n^9 + 77643945578496*n^8 - 211031837008384*n^7 + 411217026027200*n^6 - 577827896836090*n^5 + 579810023200127*n^4 - 403994885007838*n^3 + 184802213339825*n^2 - 49548085570200*n + 5838168798000)*a(n-2) + 128*(2*n - 5)*(4*n - 11)*(4*n - 9)*(8*n - 23)*(8*n - 21)*(8*n - 19)*(8*n - 17)*(147456*n^6 - 1113600*n^5 + 3430080*n^4 - 5488810*n^3 + 4779029*n^2 - 2123685*n + 369600)*a(n-3). - Vaclav Kotesovec, Feb 22 2015
a(n) ~ (256/27)^n / n^(5/4) * (3^(1/4)*sqrt(EllipticK(1/sqrt(2)))/(2*Pi)^(3/4) - sqrt(3/(2*Pi))/n^(1/4) + (2/(3*Pi))^(1/4) / sqrt(EllipticK(1/sqrt(2)))/n^(1/2)), where EllipticK(1/sqrt(2)) = A093341 = GAMMA(1/4)^2/(4*(Pi)^(1/2)) = 1.85407467730137191843385... (= EllipticK[1/2] in Mathematica). - Vaclav Kotesovec, Feb 22 2015

A381916 Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 4, 29, 270, 2897, 34051, 426199, 5582619, 75660075, 1052748518, 14956346820, 216088986290, 3165555750458, 46912569559556, 702072705679590, 10595488626535181, 161071258091631337, 2464201011094137000, 37911236702465987337, 586166246311185676045, 9103432675706477369934
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(4*n-k+2, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x))^3.
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(4*n-k+2,n-k)/(n+4*k+1).

A382031 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 3, 43, 1177, 46681, 2419291, 154587427, 11735209585, 1031418915121, 102979800567091, 11510663862332251, 1423811747933017609, 193073662118499898633, 28479005472094048953355, 4539456019668776334683731, 777538096585429376795405281, 142419954152382631361835929185
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+3*k, k)/((n+3*k)*(n-k-1)!)));

Formula

Let F(x) be the e.g.f. of A382044. F(x) = log(A(x))/x = B(x*A(x)^2).
a(n) = n! * Sum_{k=0..n-1} (2*k+1)^(n-k-1) * binomial(n+3*k,k)/((n+3*k) * (n-k-1)!) for n > 0.

A382038 Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 11, 244, 8285, 381096, 22175167, 1562582848, 129381990201, 12313784396800, 1324663415429651, 158957183013686784, 21051725357219126869, 3050121640032545419264, 479928476696367747954375, 81499293517054315684642816, 14856515462975583258374526833, 2893604521320117995839047401472
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));

Formula

E.g.f. A(x) satisfies A(x) = exp(x*A(x) * B(x*A(x))^4).
a(n) = (n-1)! * Sum_{k=0..n-1} (n+1)^(n-k-1) * binomial(4*n,k)/(n-k-1)! for n > 0.
E.g.f.: exp( Series_Reversion( x*exp(-x)/(1+x)^4 ) ).

A137572 The first upper diagonal of square array A137570; equals the convolution of the main diagonal A137571 with A002293.

Original entry on oeis.org

1, 3, 16, 100, 681, 4908, 36842, 285158, 2260257, 18257902, 149769225, 1244277499, 10448404901, 88538107802, 756153001241, 6501989278168, 56244305146039, 489111092027854, 4273491476147117, 37496699100314116, 330261353255659842
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2008

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 16*x^2 + 100*x^3 + 681*x^4 + 4908*x^5 +...;
A(x) = F(x)/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=F/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}

Formula

G.f. A(x) = F(x)/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108) and F(x) = 1 + xF(x)^4 is g.f. of A002293.

A137573 The first lower diagonal in square array A137570; equals the convolution of the main diagonal A137571 with the Catalan numbers (A000108) and with the square of A002293.

Original entry on oeis.org

1, 5, 29, 186, 1281, 9294, 70109, 544833, 4333381, 35108351, 288738813, 2404256945, 20228988678, 171716799066, 1468804301441, 12647321103329, 109538312419238, 953622158606749, 8340394595266367, 73247287493299642
Offset: 0

Views

Author

Paul D. Hanna, Jan 27 2008

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 29*x^2 + 186*x^3 + 1281*x^4 + 9294*x^5 +...;
A(x) = C(x)*F(x)^2/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=C*F^2/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}

Formula

G.f. A(x) = C(x)*F(x)^2/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108) and F(x) = 1 + xF(x)^4 is g.f. of A002293.

A363111 Expansion of g.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 11, 127, 1547, 19652, 258069, 3481034, 47999915, 674086924, 9612919156, 138878011335, 2028718584989, 29918897595468, 444889269572286, 6663228661354420, 100430376524360459, 1522215623202615036, 23187346871707554564, 354783440893854307244
Offset: 0

Views

Author

Paul D. Hanna, May 30 2023

Keywords

Comments

Compare the g.f. A(x) = F(x*F(x)^7) to F(-x*F(x)^7) = 1/F(x), where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.

Examples

			G.f.: A(x) = 1 + x + 11*x^2 + 127*x^3 + 1547*x^4 + 19652*x^5 + 258069*x^6 + 3481034*x^7 + 47999915*x^8 + 674086924*x^9 + ...
such that A(x) = F(x*F(x)^7) where F(x) = 1 + x*F(x)^4 begins
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^3) = ( Series_Reversion( x/A(x)^3 )/x )^(1/3) which begins
B(x) = 1 + x + 14*x^2 + 238*x^3 + 4578*x^4 + 95130*x^5 + 2082150*x^6 + 47295990*x^7 + 1104598378*x^8 + ...
then
( (B(x) - 1)/x )^(1/7) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + ... + A363304(n)*x^n + ...
is an integer series.
		

Crossrefs

Programs

  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 7*k* binomial(4*k+1, k) * binomial(4*n+3*k, n-k) / ((4*k+1)*(4*n+3*k)) ) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 */
    {a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^4 + x*O(x^n));
    polcoeff( subst(F, x, x*F^7), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, F(x) is the g.f. of A002293.
(1) A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4.
(2) A(x) = B(x/A(x)^3) where B(x) = A(x*B(x)^3) = F( x*B(x)^3 * F(x*B(x)^3)^7 ).
(3) a(n) = Sum_{k=1..n} 7*k* binomial(4*k+1, k) * binomial(4*n+3*k, n-k) / ((4*k+1)*(4*n+3*k)) for n > 0, with a(0) = 1.

A381914 Expansion of (1/x) * Series_Reversion( x * (1-x) / B(x) ), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 2, 10, 72, 624, 6009, 61809, 664813, 7384613, 84045565, 974913510, 11483316680, 136974177209, 1651166320547, 20083352214058, 246168280262403, 3037682020219285, 37706043912831337, 470482875049515074, 5897864081341146065, 74243055437832292562, 938101296155866961124
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(2*n-k, n-k)/(n+4*k+1));

Formula

G.f. A(x) satisfies A(x) = B(x*A(x)) / (1 - x*A(x)).
a(n) = Sum_{k=0..n} binomial(n+4*k+1,k) * binomial(2*n-k,n-k)/(n+4*k+1).
Previous Showing 11-20 of 261 results. Next