A380514
Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 5, 67, 1537, 50021, 2107021, 108885295, 6665443457, 471522589417, 37843890892021, 3397250515809371, 337267132243022785, 36687625652474612557, 4339368321317331858557, 554467482301151809302151, 76112537023512618262963201, 11170667360636927554290623825, 1745500813880455301486766050917
Offset: 0
-
a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+2*k, k)/((2*n+2*k)*(n-k-1)!)));
A382034
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 9, 181, 5713, 246881, 13570081, 906180997, 71250724833, 6448375469665, 660286026034561, 75472025139452261, 9525947428687403473, 1315935073971181422721, 197485196722573989608289, 31993978774204625549549221, 5565216938342017912128576961, 1034506012356981473110554574145
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));
A153396
G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x/F(x)^2) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)^2) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 5, 32, 228, 1726, 13587, 109923, 907499, 7609898, 64609346, 554108863, 4792190298, 41739160686, 365746143064, 3221723465187, 28509044813580, 253295607463902, 2258539046009268, 20203103111671575, 181242298665210280
Offset: 0
G.f.: A(x) = F(x*G(x)^3) = 1 + x + 5*x^2 + 32*x^3 + 228*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 74*x^3 + 545*x^4 + 4228*x^5 +...
G(x)^3*A(x)^2 = 1 + 5*x + 32*x^2 + 228*x^3 + 1726*x^4 + 13587*x^5 +...
-
Join[{1},Table[Sum[Binomial[2k+1,k]/(2k+1) Binomial[4n-k,n-k]3 k/(4n-k), {k,0,n}],{n,20}]] (* Harvey P. Dale, Feb 09 2015 *)
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(4*(n-k)+3*k,n-k)*3*k/(4*(n-k)+3*k)))}
A381916
Expansion of (1/x) * Series_Reversion( x * (1-x)^3 / B(x) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 4, 29, 270, 2897, 34051, 426199, 5582619, 75660075, 1052748518, 14956346820, 216088986290, 3165555750458, 46912569559556, 702072705679590, 10595488626535181, 161071258091631337, 2464201011094137000, 37911236702465987337, 586166246311185676045, 9103432675706477369934
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(4*n-k+2, n-k)/(n+4*k+1));
A382031
E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x)^2)), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 3, 43, 1177, 46681, 2419291, 154587427, 11735209585, 1031418915121, 102979800567091, 11510663862332251, 1423811747933017609, 193073662118499898633, 28479005472094048953355, 4539456019668776334683731, 777538096585429376795405281, 142419954152382631361835929185
Offset: 0
-
a(n) = if(n==0, 1, n!*sum(k=0, n-1, (2*k+1)^(n-k-1)*binomial(n+3*k, k)/((n+3*k)*(n-k-1)!)));
A382038
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-x * B(x)^4) ), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 11, 244, 8285, 381096, 22175167, 1562582848, 129381990201, 12313784396800, 1324663415429651, 158957183013686784, 21051725357219126869, 3050121640032545419264, 479928476696367747954375, 81499293517054315684642816, 14856515462975583258374526833, 2893604521320117995839047401472
Offset: 0
-
a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (n+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));
A137572
The first upper diagonal of square array A137570; equals the convolution of the main diagonal A137571 with A002293.
Original entry on oeis.org
1, 3, 16, 100, 681, 4908, 36842, 285158, 2260257, 18257902, 149769225, 1244277499, 10448404901, 88538107802, 756153001241, 6501989278168, 56244305146039, 489111092027854, 4273491476147117, 37496699100314116, 330261353255659842
Offset: 0
G.f.: A(x) = 1 + 3*x + 16*x^2 + 100*x^3 + 681*x^4 + 4908*x^5 +...;
A(x) = F(x)/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
-
{a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=F/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}
A137573
The first lower diagonal in square array A137570; equals the convolution of the main diagonal A137571 with the Catalan numbers (A000108) and with the square of A002293.
Original entry on oeis.org
1, 5, 29, 186, 1281, 9294, 70109, 544833, 4333381, 35108351, 288738813, 2404256945, 20228988678, 171716799066, 1468804301441, 12647321103329, 109538312419238, 953622158606749, 8340394595266367, 73247287493299642
Offset: 0
G.f.: A(x) = 1 + 5*x + 29*x^2 + 186*x^3 + 1281*x^4 + 9294*x^5 +...;
A(x) = C(x)*F(x)^2/(1 - x*C(x)*F(x)^2 - x*F(x)^3), where
C(x) = 1 + xC(x)^2 is g.f. of Catalan numbers (A000108):
[1, 1, 2, 5, 14, 42, 132, 429, 1430, ..., C(2n,n)/(n+1), ...] and
F(x) = 1 + xF(x)^4 is g.f. of A002293:
[1, 1, 4, 22, 140, 969, 7084, 53820, ..., C(4n,n)/(3n+1), ...].
-
{a(n)=local(m=n+1,C,F,A); C=Ser(vector(m,r,binomial(2*r-2,r-1)/r)); F=Ser(vector(m,r,binomial(4*r-4,r-1)/(3*r-2))); A=C*F^2/(1-x*C*F^2-x*F^3);polcoeff(A+O(x^m),n,x)}
A363111
Expansion of g.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 11, 127, 1547, 19652, 258069, 3481034, 47999915, 674086924, 9612919156, 138878011335, 2028718584989, 29918897595468, 444889269572286, 6663228661354420, 100430376524360459, 1522215623202615036, 23187346871707554564, 354783440893854307244
Offset: 0
G.f.: A(x) = 1 + x + 11*x^2 + 127*x^3 + 1547*x^4 + 19652*x^5 + 258069*x^6 + 3481034*x^7 + 47999915*x^8 + 674086924*x^9 + ...
such that A(x) = F(x*F(x)^7) where F(x) = 1 + x*F(x)^4 begins
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^3) = ( Series_Reversion( x/A(x)^3 )/x )^(1/3) which begins
B(x) = 1 + x + 14*x^2 + 238*x^3 + 4578*x^4 + 95130*x^5 + 2082150*x^6 + 47295990*x^7 + 1104598378*x^8 + ...
then
( (B(x) - 1)/x )^(1/7) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + ... + A363304(n)*x^n + ...
is an integer series.
-
{a(n) = if(n==0, 1, sum(k=1, n, 7*k* binomial(4*k+1, k) * binomial(4*n+3*k, n-k) / ((4*k+1)*(4*n+3*k)) ) )}
for(n=0, 30, print1(a(n), ", "))
-
/* G.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 */
{a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^4 + x*O(x^n));
polcoeff( subst(F, x, x*F^7), n)}
for(n=0, 30, print1(a(n), ", "))
A381914
Expansion of (1/x) * Series_Reversion( x * (1-x) / B(x) ), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 2, 10, 72, 624, 6009, 61809, 664813, 7384613, 84045565, 974913510, 11483316680, 136974177209, 1651166320547, 20083352214058, 246168280262403, 3037682020219285, 37706043912831337, 470482875049515074, 5897864081341146065, 74243055437832292562, 938101296155866961124
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+4*k+1, k)*binomial(2*n-k, n-k)/(n+4*k+1));
Comments