cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 130 results. Next

A213229 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^7)^2).

Original entry on oeis.org

1, 1, 3, 16, 93, 649, 4924, 40221, 344817, 3058115, 27798895, 257009431, 2404734586, 22679499148, 214947515333, 2042353663088, 19417906390395, 184458621283607, 1748712359825873, 16530801697256737, 155736745914813741, 1461877902947680987, 13674142992787617967
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 93*x^4 + 649*x^5 + 4924*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 273*x^3 + 1862*x^4 + 13531*x^5 + 104062*x^6 +...
1/A(-x*A(x)^7)^2 = 1 + 2*x + 11*x^2 + 60*x^3 + 431*x^4 + 3302*x^5 + 27421*x^6 +..
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^7, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213230 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^2).

Original entry on oeis.org

1, 1, 3, 18, 115, 902, 7722, 70784, 678251, 6670586, 66851992, 677328214, 6903177354, 70490174298, 718856047396, 7304677030708, 73837797474235, 741722190452840, 7402780597473820, 73459355234486763, 726095774886910232, 7170907377415662763, 71063833561266044578
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 115*x^4 + 902*x^5 + 7722*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 52*x^2 + 368*x^3 + 2754*x^4 + 22112*x^5 + 189344*x^6 +...
1/A(-x*A(x)^8)^2 = 1 + 2*x + 13*x^2 + 78*x^3 + 634*x^4 + 5488*x^5 + 50969*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213231 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^3).

Original entry on oeis.org

1, 1, 4, 25, 176, 1431, 12526, 117850, 1167446, 12080563, 129326575, 1422908670, 15999766613, 183070661566, 2124252427416, 24929036429880, 295250330398281, 3523043486823439, 42294807342916249, 510274778010082846, 6181011777164665559, 75112032752942278141
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 176*x^4 + 1431*x^5 + 12526*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 480*x^3 + 3998*x^4 + 34968*x^5 + 318888*x^6 +...
1/A(-x*A(x)^8)^3 = 1 + 3*x + 18*x^2 + 121*x^3 + 987*x^4 + 8646*x^5 + 82244*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213232 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^9)^3).

Original entry on oeis.org

1, 1, 4, 28, 215, 1983, 19789, 213698, 2426851, 28661509, 348287354, 4322627557, 54508747790, 695534616050, 8953637420349, 116002300640637, 1509724588732027, 19707310304585212, 257698683361191598, 3372154116182404890, 44121356408759264549
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 215*x^4 + 1983*x^5 + 19789*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 624*x^3 + 5661*x^4 + 54621*x^5 + 555837*x^6 +...
1/A(-x*A(x)^9)^3 = 1 + 3*x + 21*x^2 + 154*x^3 + 1446*x^4 + 14511*x^5 + 158838*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^9, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213233 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^10)^4).

Original entry on oeis.org

1, 1, 5, 39, 345, 3512, 38431, 451620, 5587237, 72275004, 968509140, 13361356169, 188704259571, 2716467168169, 39716842554828, 588125693790055, 8800638181341593, 132838773216409675, 2019626662710709088, 30891440565153652705, 474899505740289874276
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 39*x^3 + 345*x^4 + 3512*x^5 + 38431*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 960*x^3 + 10095*x^4 + 111212*x^5 +...
1/A(-x*A(x)^10)^4 = 1 + 4*x + 30*x^2 + 256*x^3 + 2605*x^4 + 28484*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^4, x, -x*subst(A^10, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A251585 a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125).

Original entry on oeis.org

1, 1, 7, 116, 3229, 129000, 6776875, 443200000, 34766465625, 3185000000000, 333992093359375, 39470976000000000, 5192072114658203125, 752537122540000000000, 119176291179656982421875, 20476256583680000000000000, 3793880513498167242431640625, 754086862404270000000000000000
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 7*x^2/2! + 116*x^3/3! + 3229*x^4/4! + 129000*x^5/5! + ...
such that A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4
where G(x) = 1 + x*G(x)^5 is the g.f. of A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + ...
RELATED SERIES.
Note that A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4,
F(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1505*x^4/4! + 51505*x^5/5! + ...
is the e.g.f. of A251575.
		

Crossrefs

Programs

  • Magma
    [5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125): n in [0..50]]; // G. C. Greubel, Nov 13 2017
  • Mathematica
    Table[5^(n - 3)*(n + 1)^(n - 5)*(16*n^3 + 87*n^2 + 172*n + 125), {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    {a(n) = 5^(n-3) * (n+1)^(n-5) * (16*n^3 + 87*n^2 + 172*n + 125)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = local(G=1,A=1); for(i=1,n, G=1+x*G^5 +x*O(x^n));
    for(i=1,n, A = exp(5*x*A * subst(G^4,x,x*A) ) / subst(G^4,x,x*A) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    

Formula

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 5*x*A(x) * G(x*A(x))^4 ) / G(x*A(x))^4.
(2) A(x) = F(x*A(x)) where F(x) = exp(5*x*G(x)^4)/G(x)^4 is the e.g.f. of A251575.
(3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251575.
E.g.f.: -LambertW(-5*x) * (5 + LambertW(-5*x))^4 / (x*5^5). - Vaclav Kotesovec, Dec 07 2014

A251695 a(n) = (3*n+1) * (4*n+1)^(n-2) * 5^n.

Original entry on oeis.org

1, 4, 175, 16250, 2348125, 463050000, 115966796875, 35253537343750, 12611991884765625, 5191587030710937500, 2417311348659677734375, 1256208098030090332031250, 720779749270420907470703125, 452589644988876542822265625000, 308707218248583408960223388671875
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + 4*x + 175*x^2/2! + 16250*x^3/3! + 2348125*x^4/4! + 463050000*x^5/5! +...
such that A(x) = exp( 5*x*A(x)^4 * G(x*A(x)^4)^4 ) / G(x*A(x)^4),
where G(x) = 1 + x*G(x)^5 is the g.f. A002294:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 +...
Also, e.g.f. A(x) satisfies A(x) = F(x*A(x)^4) where
F(x) = 1 + 4*x + 47*x^2/2! + 1034*x^3/3! + 34349*x^4/4! + 1540480*x^5/5! +...
F(x) = exp( 5*x*G(x)^4 ) / G(x) is the e.g.f. of A251665.
		

Crossrefs

Programs

  • Magma
    [(3*n + 1)*(4*n + 1)^(n - 2)*5^n: n in [0..50]]; // G. C. Greubel, Nov 13 2017
  • Mathematica
    Table[(3*n + 1)*(4*n + 1)^(n - 2)*5^n, {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    {a(n) = (3*n+1) * (4*n+1)^(n-2) * 5^n}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=local(G=1,A=1); for(i=0, n, G = 1 + x*G^5 +x*O(x^n));
    A = ( serreverse( x*G^4 / exp(20*x*G^4) )/x )^(1/4); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    

Formula

Let G(x) = 1 + x*G(x)^5 be the g.f. of A002294, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 5*x*A(x)^4 * G(x*A(x)^4)^4 ) / G(x*A(x)^4).
(2) A(x) = F(x*A(x)^4) where F(x) = exp(5*x*G(x)^4)/G(x) is the e.g.f. of A251665.
(3) A(x) = ( Series_Reversion( x*G(x)^4 / exp(20*x*G(x)^4) )/x )^(1/4).
E.g.f.: (-LambertW(-20*x)/(20*x))^(1/4) * (1 + LambertW(-20*x)/20). - Vaclav Kotesovec, Dec 07 2014

A355262 Array of Fuss-Catalan numbers read by ascending antidiagonals, A(n, k) = binomial(k*n + 1, k)/(k*n + 1).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 5, 1, 0, 1, 1, 4, 12, 14, 1, 0, 1, 1, 5, 22, 55, 42, 1, 0, 1, 1, 6, 35, 140, 273, 132, 1, 0, 1, 1, 7, 51, 285, 969, 1428, 429, 1, 0, 1, 1, 8, 70, 506, 2530, 7084, 7752, 1430, 1, 0
Offset: 0

Views

Author

Peter Luschny, Jun 26 2022

Keywords

Comments

An alternative definition is: the Fuss-Catalan sequences (A(n, k), k >= 0 ) are the main diagonals of the Fuss-Catalan triangles of order n - 1. See A355173 for the definition of a Fuss-Catalan triangle.

Examples

			Array A(n, k) begins:
[0] 1, 1, 0,   0,    0,     0,      0,       0,         0, ...  A019590
[1] 1, 1, 1,   1,    1,     1,      1,       1,         1, ...  A000012
[2] 1, 1, 2,   5,   14,    42,    132,     429,      1430, ...  A000108
[3] 1, 1, 3,  12,   55,   273,   1428,    7752,     43263, ...  A001764
[4] 1, 1, 4,  22,  140,   969,   7084,   53820,    420732, ...  A002293
[5] 1, 1, 5,  35,  285,  2530,  23751,  231880,   2330445, ...  A002294
[6] 1, 1, 6,  51,  506,  5481,  62832,  749398,   9203634, ...  A002295
[7] 1, 1, 7,  70,  819, 10472, 141778, 1997688,  28989675, ...  A002296
[8] 1, 1, 8,  92, 1240, 18278, 285384, 4638348,  77652024, ...  A007556
[9] 1, 1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, ...  A062994
		

References

  • N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi queat, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, vol.9 (1791), 243-251.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1990, (Eqs. 5.70, 7.66, and sec. 7.5, example 5).

Crossrefs

Variants: A062993, A070914.
Fuss-Catalan triangles: A123110 (order 0), A355173 (order 1), A355172 (order 2), A355174 (order 3).

Programs

  • Maple
    A := (n, k) -> binomial(k*n + 1, k)/(k*n + 1):
    for n from 0 to 9 do seq(A(n, k), k = 0..8) od;
  • Mathematica
    (* See the Knuth references. In the christmas lecture Knuth has fun calculating the Fuss-Catalan development of Pi and i. *)
    B[t_, n_] := Sum[Binomial[t k+1, k] z^k / (t k+1), {k, 0, n-1}] + O[z]^n
    Table[CoefficientList[B[n, 9], z], {n, 0, 9}] // TableForm

Formula

A(n, k) = (1/k!) * Product_{j=1..k-1} (k*n + 1 - j).
A(n, k) = (binomial(k*n, k) + binomial(k*n, k-1)) / (k*n + 1).
Let B(t, z) = Sum_{k>=0} binomial(k*t + 1, k)*z^k / (k*t + 1), then
A(n, k) = [z^k] B(n, z).

A365180 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)).

Original entry on oeis.org

1, 1, 5, 31, 223, 1740, 14328, 122549, 1078197, 9695359, 88710199, 823247686, 7730244098, 73310150097, 701163085849, 6755544043969, 65506554804129, 638794412442172, 6260571309256152, 61632794482411367, 609197871548209907, 6043456939539775056
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(k, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(k,n-k)/(n+3*k+1).

A365182 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 5, 33, 252, 2091, 18319, 166750, 1561599, 14948572, 145615404, 1438752770, 14384289530, 145248707646, 1479212551278, 15175516654760, 156691764630780, 1627069871618145, 16980373299730925, 178006989972532900, 1873607777794186000
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k+1, k)*binomial(k, n-k)/(3*n+k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*n+k+1,k) * binomial(k,n-k)/(3*n+k+1).
Previous Showing 51-60 of 130 results. Next