cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 152 results. Next

A057639 First differences of zero-sites (A028442) of Mertens's function A002321.

Original entry on oeis.org

37, 1, 18, 7, 28, 8, 44, 4, 1, 9, 1, 3, 1, 2, 48, 17, 1, 3, 1, 2, 16, 75, 2, 1, 1, 20, 2, 1, 2, 4, 1, 1, 2, 27, 8, 2, 1, 1, 2, 1, 5, 1, 5, 1, 2, 1, 1, 1, 2, 1, 109, 4, 66, 1, 27, 1, 1, 144, 4, 8, 2, 1, 2, 13, 1, 2, 9, 1, 1, 24, 1, 3, 16, 8, 6, 1, 2, 3, 4, 2, 1, 2, 5, 1, 2, 4, 3, 2, 1, 3, 1, 82, 3, 5
Offset: 1

Views

Author

Labos Elemer, Oct 11 2000

Keywords

Comments

Mertens's function (A002321) is oscillating. The width of its waves is given here.

Crossrefs

Programs

  • Mathematica
    Differences[Position[Accumulate[Array[MoebiusMu,1500]],0]//Flatten] (* Harvey P. Dale, Nov 10 2016 *)
  • PARI
    lista(kmax) = {my(s = 0, k1 = 2); for(k2 = 3, kmax, s += moebius(k2); if(s == 0, print1(k2 - k1, ", "); k1 = k2));} \\ Amiram Eldar, Jun 09 2024

Formula

a(n) = A028442(n+1) - A028442(n).

Extensions

Offset corrected by Amiram Eldar, Jun 09 2024

A059581 From Von Sterneck's conjecture: floor(sqrt(n)) - 2*|Mertens's function A002321(n)|.

Original entry on oeis.org

-1, 1, -1, 0, -2, 0, -2, -2, -1, 1, -1, -1, -3, -1, 1, 2, 0, 0, -2, -2, 0, 2, 0, 0, 1, 3, 3, 3, 1, -1, -3, -3, -1, 1, 3, 4, 2, 4, 6, 6, 4, 2, 0, 0, 0, 2, 0, 0, 1, 1, 3, 3, 1, 1, 3, 3, 5, 7, 5, 5, 3, 5, 5, 6, 8, 6, 4, 4, 6, 4, 2, 2, 0, 2, 2, 2, 4, 2, 0, 0, 1, 3, 1, 1, 3, 5, 7, 7, 5, 5, 7, 7, 9
Offset: 1

Views

Author

N. J. A. Sloane, Feb 16 2001

Keywords

Comments

Von Sterneck conjectured that 2*|A002321(n)| < sqrt(n) for all sufficiently large n. This is now known to be false. This is different from the Mertens conjecture that |A002321(n)| < sqrt(n) for all n > 1 (which is also false).

References

  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section VI.2, p. 188.

Crossrefs

Programs

  • Mathematica
    Table[Floor[Sqrt[n]] - 2 Abs[Plus @@ MoebiusMu[Range[n]]], {n, 1, 80}] (* Carl Najafi, Aug 17 2011 *)

A062984 a(n) = M(C(n)), where M(n) is Mertens's function (A002321) and C(n) is Chowla's function (A048050).

Original entry on oeis.org

0, 0, 0, 0, 0, -2, 0, -1, -1, -2, 0, -1, 0, -2, -2, -2, 0, -3, 0, -2, -1, -3, 0, -1, -2, -1, -2, -1, 0, -1, 0, -3, -2, -3, -2, -3, 0, -2, -1, -3, 0, -3, 0, 0, -4, -2, 0, -3, -2, -2, -3, -3, 0, 0, -1, -1, -1, -4, 0, -3, 0, -3, 0, -1, -2, -2, 0, -1, -1, -4, 0, -2, 0, 0, -3, -1, -2, -2, 0, -3, 0, -3, 0, -4, -1, -3, -4, -1, 0, -1, -3, -3, -2, -3
Offset: 1

Views

Author

Jason Earls, Jul 25 2001

Keywords

Crossrefs

Programs

  • Mathematica
    A062984[n_] := Sum[MoebiusMu[k], {k, DivisorSigma[1, n] - n - 1}];
    Array[A062984, 100] (* Paolo Xausa, May 03 2024 *)
  • PARI
    M(n)=sum(k=1,n,moebius(k));
    C(n)=sigma(n)-n-1;
    j=[]; for(n=1,350,j=concat(j,M(C(n)))); j
    
  • PARI
    { for (n=1, 2000, a=sum(k=1, sigma(n) - n - 1, moebius(k)); write("b062984.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 15 2009

A063473 a(n) = M(2*n-1), where M(n) is Mertens's function (A002321): Sum_{k=1..n} mu(k), where mu = Moebius function (A008683).

Original entry on oeis.org

1, -1, -2, -2, -2, -2, -3, -1, -2, -3, -2, -2, -2, -1, -2, -4, -3, -1, -2, 0, -1, -3, -3, -3, -3, -2, -3, -2, -1, -1, -2, -1, 0, -2, -1, -3, -4, -3, -2, -4, -4, -4, -3, -1, -2, -1, 0, 2, 1, 1, 0, -2, -3, -3, -4, -4, -5, -5, -5, -3, -3, -1, -1, -2, -1, -3, -2, -1, -2, -4, -3, -1, 0, 1, 0, -1, -1, -1, -2, 0, 1, 0, -1, -1, -1, -2, -3, -4, -3
Offset: 1

Views

Author

Jason Earls, Jul 27 2001

Keywords

Crossrefs

Programs

  • PARI
    M(n)=sum(k=1,n,moebius(k));
    j=[]; for(n=1,200,j=concat(j,M(2*n-1))); j
    
  • PARI
    { for (n=1, 1000, if (n>1, a+=moebius(2*n - 2) + moebius(2*n - 1), a=1); write("b063473.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 22 2009

A067195 Numbers n such that M(n) = Sum_{i=1..n} mu(sigma(i)) where M(n) is the Mertens function A002321(n).

Original entry on oeis.org

1, 2, 4, 30, 33, 38, 42, 45, 47, 48, 57, 59, 60, 64, 66, 69, 77, 82, 85, 104, 106, 118, 121, 194, 196, 201, 285, 287, 288, 290, 465, 467, 468, 470, 499, 500, 510, 610, 614, 626, 628, 631, 632, 642, 718, 723, 724, 785, 793, 798, 811, 812, 814, 823, 824, 825, 838
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    M[n_] := Sum[MoebiusMu[k], {k, n}]; Select[Range@ 838, Sum[MoebiusMu[DivisorSigma[1, i]], {i, #}] == M[#] &] (* Indranil Ghosh, Mar 16 2017 *)
  • PARI
    isok(n) = sum(i = 1, n, moebius(sigma(i))) == mertens(n); \\ Michel Marcus, Sep 24 2013

A067196 Numbers n such that M(n) = Sum_{i=1..n} mu(phi(i)) where M(n) is the Mertens function A002321(n).

Original entry on oeis.org

1, 6, 142, 154, 157, 167, 168, 169, 209, 213, 214, 231, 232, 235, 236, 238, 239, 240, 242, 243, 244, 245, 247, 248, 251, 252, 257, 259, 260, 261, 263, 264, 266, 269, 270, 278, 279, 280, 301, 318, 362, 363, 364, 366, 367, 368, 369, 371, 372, 391, 392, 402
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Programs

  • Mathematica
    mQ[n_]:=Sum[MoebiusMu[i],{i,n}]==Sum[MoebiusMu[EulerPhi[i]],{i,n}]; Select[Range[405],mQ[#] &] (* Jayanta Basu, May 22 2013 *)

A067265 Numbers n such that prime(n+1) - prime(n) = M(n) where M(n) is the Mertens function A002321(n).

Original entry on oeis.org

1, 226, 336, 395, 398, 552, 554, 583, 588, 805, 872, 926, 957, 961, 984, 995, 1008, 1263, 1275, 1363, 1384, 1443, 1447, 1450, 1456, 1462, 1946, 1949, 1957, 1964, 1988, 1991, 1992, 1997, 2008, 2023, 2028, 2037, 2055, 2076, 2107, 2175, 2203, 2234, 2240
Offset: 1

Views

Author

Benoit Cloitre, Feb 21 2002

Keywords

Programs

  • Mathematica
    PrimePi/@With[{nn=2500},Transpose[Select[Thread[{Partition[Prime[ Range[ nn+1]],2,1], Accumulate[Array[MoebiusMu,nn]]}]/.{{a_,b_},c_}-> {a,b,c}, #[[2]]-#[[1]]==#[[3]]&]][[1]]] (* Harvey P. Dale, Nov 23 2011 *)

A067266 Numbers n such that omega(n)=M(n) where omega(n) is A001221(n) and M(n) is the Mertens function A002321(n).

Original entry on oeis.org

95, 96, 97, 217, 228, 335, 337, 339, 342, 349, 395, 397, 398, 417, 543, 544, 546, 550, 603, 604, 605, 802, 804, 807, 808, 809, 817, 819, 820, 871, 872, 873, 879, 881, 901, 922, 930, 938, 945, 947, 949, 952, 962, 969, 971, 973, 975, 979, 981, 989, 991, 993
Offset: 1

Views

Author

Benoit Cloitre, Feb 21 2002

Keywords

Comments

"omega(n)" (in the definition) means the number of prime factors of n counted without multiplicity, A001221. - Harvey P. Dale, Jul 14 2014

Crossrefs

Programs

  • Haskell
    a067266 n = a067266_list !! (n-1)
    a067266_list = filter (\x -> a001221 x == a002321 x) [1..]
    -- Reinhard Zumkeller, Jul 14 2014
  • Maple
    N:= 10^4: # to get all terms up to N
    A:= [seq(numtheory[mobius](n),n=1..N)]:
    Mertens:= map(round,Statistics:-CumulativeSum(A)):
    omega:= t -> nops(numtheory:-factorset(t)):
    select(t -> omega(t) = Mertens[t], [$1..N]); # Robert Israel, Jul 14 2014
  • Mathematica
    With[{nn=1000},Flatten[Position[Thread[{Accumulate[Array[ MoebiusMu,nn]], PrimeNu[ Range[ nn]]}],?(First[#]==Last[#]&),{1},Heads->False]]] (* _Harvey P. Dale, Jul 14 2014 *)
  • PARI
    isok(n) = (omega(n) == mertens(n)); \\ Michel Marcus, Sep 24 2013
    

A084236 a(n) = M(2^n), where M(n) is Mertens's function, A002321.

Original entry on oeis.org

1, 0, -1, -2, -1, -4, -1, -2, -1, -4, -4, 7, -19, 22, -32, 26, 14, -20, 24, -125, 257, -362, 228, -10, 211, -1042, 329, 330, -1703, 6222, -10374, 9569, 1814, -10339, -3421, 8435, 38176, -28118, 38729, -135944, 101597, 15295, -169338, 259886, -474483, 1726370, -3554573
Offset: 0

Views

Author

Robert G. Wilson v, May 15 2003

Keywords

Crossrefs

Programs

  • Mathematica
    s = 0; i = 1; Do[ While[i <= 2^n, s = s + MoebiusMu[i]; i++ ]; Print[s], {n, 0, 50}]
  • PARI
    a(n) = sum(k=1, 2^n, moebius(k)) \\ Indranil Ghosh, Mar 15 2017

Formula

a(n) = A002321(2^n).
a(n) = Sum_{k=1..2^n} mu(k), where mu = Moebius function (A008683).

Extensions

a(31)-a(46) from Hurst's paper (copied by Charles R Greathouse IV, Oct 15 2018)

A127332 A126988 * A002321.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 5, 4, 4, 5, 9, 1, 10, 8, 3, 7, 15, 3, 16, 2, 6, 17, 21, -6, 13, 19, 11, 8, 27, -5, 27, 10, 13, 28, 10, -10, 35, 31, 17, -6, 40, -3, 40, 20, -4, 40, 44, -18, 32, 18, 26, 23, 50, 4, 21, 0, 28, 54, 58, -45, 59, 53, 3, 19, 24, 11, 65, 37, 39, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 10 2007

Keywords

Examples

			a(6) = 3 = 6*1 + 3*0 + 2*(-1) + 0*(-1) + 0*(-2) + 1*(-1), where (6, 3, 2, 0, 0, 1) = row 6 of A126988.
		

Crossrefs

Programs

  • Mathematica
    Block[{nn = 70, m}, m = Table[Sum[MoebiusMu@k, {k, n}], {n, nn}]; Table[Total@ Array[m[[#]] If[Mod[n, #] == 0, n/#, 0] &, n], {n, nn}]] (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(nn) = {mat = matrix(nn, nn, n, k, if (n % k, 0, n/k)); vec = matrix(nn, 1, n, k, if (k==1, mertens(n), 0)); res = (mat*vec); for (n = 1, nn, print1(res[n, 1], ", "););} \\ Michel Marcus, Sep 25 2013
    
  • PARI
    a(n) = sum(k=1, n, moebius(k / gcd(n, k)) * eulerphi(k) / eulerphi(k / gcd(n, k))); \\ Daniel Suteu, Jun 23 2018

Formula

M * V where M = A126988 as an infinite lower triangular matrix and V = the Mertens sequence, A002321 as a vector: [1, 0, -1, -1, -2, -1, ...].
a(n) = Sum_{q=1..n} c_q(n), where c_q(n) is the Ramanujan's sum function given in A054533. - Daniel Suteu, Jun 14 2018

Extensions

Corrected and extended by Michel Marcus, Sep 25 2013
Previous Showing 41-50 of 152 results. Next