cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 152 results. Next

A144032 Triangle read by rows: T(n,k) = A002321(n-k+1)*A144031(k-1).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, -1, -1, 0, 0, -2, -1, -1, 0, -2, -1, -2, -1, 0, 0, -6, -2, -1, -2, 0, 2, 0, -10, -2, -2, -1, 0, 2, 6, 0, -13, -2, -2, -2, 0, 46, 10, 0, -10, -1, -2, -2, 0, 2, 12, 10, 13, 0, 4, -2, -1, -2, 0, 4, 6, 10, 13, 10, 0, 36, -2, -2, -1, 0, 4, 12, 10, 26, 10, -4, 0, 84, -3
Offset: 1

Views

Author

Gary W. Adamson, Sep 07 2008

Keywords

Comments

Row sums = A144031, the INVERT transform of A002321.
Left border = the Mertens's function, A002321.
Right border = A144031 shifted.
Sum of n-th row terms = rightmost term of (n+1)-th row.

Examples

			First few rows of the triangle:
   1;
   0,  1;
  -1,  0,  1;
  -1, -1,  0, 0;
  -2, -1, -1, 0, -2;
  -1, -2, -1, 0,  0, -6;
  -2, -1, -2, 0,  2,  0, -10;
  -2, -2, -1, 0,  2,  6,   0, -13;
  -2, -2, -2, 0,  4,  6,  10,   0, -10;
  ...
Row 5 = (-2, -1, -1, 0, -2) termwise products of (-2, -1, -1, 0, 1) and (1, 1, 1, 0, -2); = ((-2)*(1), (-1)*(1), (-1)*(1), (0)*(0), (1)*(-2)). (-2, -1, -1, 0, 1) = the first 5 terms of A002321, the Mertens's function. (1, 1, 1, 0, -2) = 5 shifted terms of A144031.
		

Crossrefs

A162459 A002321*A000079.

Original entry on oeis.org

1, 0, -4, -8, -32, -32, -128, -256, -512, -512, -2048, -4096, -12288, -16384, -16384, -32768, -131072, -262144, -786432, -1572864, -2097152, -2097152, -8388608, -16777216, -33554432, -33554432, -67108864, -134217728, -536870912, -1610612736, -4294967296
Offset: 1

Views

Author

Mats Granvik, Jul 04 2009

Keywords

Comments

Appears to be the determinant of n X n (-1,1) matrix defined by A(i,j)=1 if j=1 or i divides j else -1.
Appears also to be the determinant of n X n (-i/j,i/j) matrix defined by A(i,j)=i/j if j=1 or i divides j else -i/j.

Crossrefs

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A162459(n):
        if n == 0:
            return 0
        c, j = n, 2
        k1 = n//j
        while k1 > 1:
            j2 = n//k1 + 1
            c += (j2-j)*A162459(k1)//2**(k1-1)
            j, k1 = j2, n//j2
        return 2**(n-1)*(j-c) # Chai Wah Wu, Mar 30 2021

Formula

a(n) = 2^(n-1)*A002321(n). - Chai Wah Wu, Mar 30 2021

A180050 Triangle T(n,k) read by rows. n>3,k=1 T(n,k)=A002321(n-1). The rest of the table is described by the recurrence in the Excel formula.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, -1, -2, -3, 1, -1, 1, 3, -3, 1, -2, -3, -3, 2, -3, 1, -1, 2, 2, 0, 2, -3, 1, -2, -4, -3, 0, -1, 2, -3, 1, -2, 2, 3, -3, 3, -1, 2, -3, 1, -2, -4, -4, 3, -4, 2, -1, 2, -3, 1, -1, 3, 4, -1, 0, -1, 2, -1, 2, -3, 1, -2, -5, -5, 1, 1, -1, -2, 2, -1, 2, -3, 1, -2, 3, 4, -4, 3, -1, 2
Offset: 1

Views

Author

Mats Granvik, Aug 08 2010

Keywords

Comments

Matrix inverse of A180051. Where the Excel formula says "randbetween(-9;9)" this table has the values of the Mertens function in the first column. Help with translating the spreadsheet formula would be appreciated.

Examples

			Table begins:
1,
1,1,
1,1,1,
-1,-2,-3,1,
-1,1,3,-3,1,
-2,-3,-3,2,-3,1,
-1,2,2,0,2,-3,1,
-2,-4,-3,0,-1,2,-3,1,
-2,2,3,-3,3,-1,2,-3,1,
-2,-4,-4,3,-4,2,-1,2,-3,1,
-1,3,4,-1,0,-1,2,-1,2,-3,1,
-2,-5,-5,1,1,-1,-2,2,-1,2,-3,1,
-2,3,4,-4,3,-1,2,-2,2,-1,2,-3,1,
-3,-6,-5,3,-4,2,-2,1,-2,2,-1,2,-3,1,
		

Crossrefs

Programs

  • Excel
    Using European dot comma style:
    =if(row()>=column();if(row()<=3;1;if(column()=1; randbetween(-9;9);if(or(column()=2;column()=3);sum(indirect(address(row();column()-1; 4)))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4));sum(indirect(address(row()-column()+2; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4)))));0)
  • Mathematica
    Contribution from Mats Granvik, Aug 11 2010: (Start)
    [from Wouter Meeussen, seqfan]
    Clear[a];
    a[r_,c_]:=0 /; c>r;
    a[r_,c_]:=1 /; r<=3;
    a[r_,1]:=Sum[MoebiusMu[k],{k,0,r-1}];
    a[r_,c_]:=a[r,c-1]-Sum[a[r-j,c], {j,1,c-1}]/; c<=3;
    a[r_,c_]:=a[r,c]=Sum[a[r-j,c-1], {j,1,c-2}]-Sum[a[r-j,c], {j,1,c-1}];
    (m=Table[a[i,j],{i,14},{j,14}])//ColumnForm
    (End)

Formula

Contribution from Mats Granvik, Aug 11 2010: (Start)
[from Wouter Meeussen, seqfan]
a(r,c)=0 /; c>r
a(r,c)=1 /; r<=3
a(r,1)=sum(Amu(k),k=1..r)
a(r,c)=a(r,c-1)-sum(a(r-j,c), j=1..c-1)/; c<=3
a(r,c)=sum(a(r-j,c-1), j=1..c-2)-sum(a(r-j,c), j=1..c-1)
(End)

A181587 If n is even, a(n) = 0, if n is odd, a(n) = A002321(n), where A002321 is Mertens's function.

Original entry on oeis.org

1, 0, -1, 0, -2, 0, -2, 0, -2, 0, -2, 0, -3, 0, -1, 0, -2, 0, -3, 0, -2, 0, -2, 0, -2, 0, -1, 0, -2, 0, -4, 0, -3, 0, -1, 0, -2, 0, 0, 0, -1, 0, -3, 0, -3, 0, -3, 0, -3, 0, -2, 0, -3, 0, -2, 0, -1, 0, -1, 0, -2, 0, -1, 0, 0, 0, -2, 0, -1, 0, -3, 0, -4, 0, -3, 0, -2, 0, -4, 0, -4, 0, -4, 0, -3, 0, -1, 0, -2, 0, -1, 0, 0, 0, 2
Offset: 1

Views

Author

Mats Granvik, Oct 31 2010

Keywords

Crossrefs

Programs

Formula

a(n) = A000035(n)*A002321(n).

Extensions

Definition corrected and more terms by Antti Karttunen, Sep 30 2018
Incorrect g.f. removed by Georg Fischer, Nov 09 2022

A333831 Dirichlet inverse of Mertens function (A002321).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 4, 3, 2, 5, 2, 2, 4, 3, 7, 6, 1, 2, 8, 6, 1, 6, 5, 2, 9, 4, 8, 7, 2, 9, 13, 2, 1, 6, 10, 1, 10, 3, 7, 19, 2, 3, 16, 7, 7, 6, 8, 3, 14, 10, 14, 7, 0, 1, 31, 2, 1, 19, 8, 12, 7, 2, 6, 5, 14, 3, 35, 4, 3, 23, 9, 10, 11, 4, 24
Offset: 1

Views

Author

Florian Lang, Apr 07 2020

Keywords

Crossrefs

Cf. A002321.

Programs

  • PARI
    seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sum(k=1, n, moebius(k))))} \\ Andrew Howroyd, Apr 07 2020

A062983 Mertens's function of n (A002321) is not divisible by phi(n).

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Jason Earls, Jul 25 2001

Keywords

Crossrefs

Cf. A002321.

Programs

  • Mathematica
    M[n_]:= Sum[MoebiusMu[k], {k, 1, n}]; Select[Range[250], Mod[M[#], EulerPhi[#]]!=0 &] (* Indranil Ghosh, Mar 16 2017 *)
  • PARI
    M(n)=sum(k=1,n,moebius(k)); j=[]; for(n=1,250, if(Mod(M(n),eulerphi(n))!=0,j=concat(j,n))); j

A084235 Smallest k such that |M(k)| = 2^n, where M(x) is Mertens's function A002321.

Original entry on oeis.org

1, 5, 31, 199, 1637, 8507, 24110, 95961, 355541, 1786062, 6473791, 30649362, 109851909, 456774199, 2589994747, 7613644886, 37725066313, 108500046711
Offset: 1

Views

Author

Robert G. Wilson v, May 13 2003

Keywords

References

  • Karl Sabbagh, The Riemann Hypothesis, The Greatest Unsolved Problem in Mathematics, Farrar, Straus and Giroux, New York, 2002, page 191.

Crossrefs

Programs

  • Mathematica
    i = s = 0; Do[ While[ Abs[s] < 2^n, s = s + MoebiusMu[i]; i++ ]; Print[i - 1], {n, 0, 25}]

Formula

a(n) = A051402(2^n). - Amiram Eldar, May 06 2024

Extensions

Definition corrected by L. Edson Jeffery, Mar 18 2013
a(15)-a(18) by Ashley Jordan and Luke March, Jul 22 2014

A106397 Binomial transform of Mertens's function sequence A002321.

Original entry on oeis.org

1, 1, 0, -3, -11, -30, -72, -162, -353, -756, -1598, -3334, -6868, -14002, -28368, -57374, -116233, -236165, -480781, -978293, -1984231, -4003365, -8028201, -16011129, -31812545, -63129395, -125452526, -250216779, -501567302
Offset: 0

Views

Author

Gary W. Adamson, May 01 2005

Keywords

Crossrefs

Cf. A002321.

Formula

Binomial transform of A002321, assuming this has offset 0.

Extensions

More terms from Tilman Neumann, Dec 13 2008

A319502 Indices of Mertens's function M(n) (A002321) whose nearest neighbors have value 0.

Original entry on oeis.org

165, 237, 330, 354, 357, 365, 402, 406, 421, 426, 794, 797, 813, 885, 894, 897, 905, 914, 1257, 1281, 1290, 1298, 1301, 1337, 1522, 1526, 1545, 1842, 1865, 2094, 2098, 2118, 2121, 2137, 4602, 4609, 4621, 4629, 4726, 4729, 4738, 5106, 5109, 5198, 5206, 5221
Offset: 1

Views

Author

Torlach Rush, Sep 20 2018

Keywords

Comments

This sequence records the shortest intervals where M(n) leaves 0 before returning to 0.
a(n) - 1 and a(n) + 1 are both terms of A028442.
Both A045882 and A028442 are infinite and this allows for the possibility that this sequence is also infinite (for A028442 see comment of A002321).

Examples

			165 is a term because A002321(164) = A002321(166) = 0.
237 is a term because A002321(236) = A002321(238) = 0.
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->add(mobius(k),k=1..n): select(n->a(n-1)=0 and a(n+1)=0,[$2..2200]); # Muniru A Asiru, Sep 20 2018
  • Mathematica
    With[{s = Partition[Accumulate@ Array[MoebiusMu, 5300], 3, 1]}, 1 + First /@ Position[s, {0, k_, 0} /; k != 0]] (* Michael De Vlieger, Sep 24 2018 *)
  • PARI
    isok(n) = {if (n > 1, x = sum(k=1, n-1, moebius(k)); if (x == 0, if (x + moebius(n) + moebius(n+1) == 0, return (1)););); return (0);} \\ Michel Marcus, Sep 27 2018

Formula

(A002321(a(n)) - A008683(a(n))) = (A002321(a(n)) + A008683(a(n+1))) = (A008683(a(n)) + A008683(a(n+1))) = 0.

A319520 Starts of strictly increasing runs of 0's in Mertens's function A002321.

Original entry on oeis.org

2, 39, 331, 422, 45371, 22898822, 871469945, 1319506393071, 26296710367071
Offset: 1

Views

Author

Torlach Rush, Sep 21 2018

Keywords

Comments

a(n) is always squarefree.
It is not known whether this sequence is infinite. Sequence A045882 is infinite but it appears that increasing runs of consecutive nonsquarefree numbers thin out very quickly. The requirement that the runs consist of 0's is much stronger and makes it uncertain whether this sequence is also infinite.

Examples

			2 is a term because M(2) = 0.
39 is a term because M(39) = M(40) = 0.
331 is a term because M(331) = M(332) = M(333) = 0.
422 is a term because M(422) = ... = M(425) = 0.
45371 is a term because M(45371) = ... = M(45376) = 0.
		

Crossrefs

Programs

  • Mathematica
    With[{s = Map[Boole[# == 0] &, Accumulate@ Array[MoebiusMu, 10^5]]}, Union@ Array[SequencePosition[s, ConstantArray[1, #]][[1, 1]] &, 5]] (* Michael De Vlieger, Sep 26 2018 *)
  • PARI
    M=S=R=0;for(n=1,oo,if(!M+=moebius(n),S||S=n,S,n-S>R&&print1(S",")+R=n-S;S=0)) \\ M. F. Hasler, Nov 23 2018

Extensions

a(6)-a(7) from Amiram Eldar, Sep 26 2018
a(8)-a(9) from Henri Lifchitz, Mar 09 2025
Previous Showing 51-60 of 152 results. Next