A144032
Triangle read by rows: T(n,k) = A002321(n-k+1)*A144031(k-1).
Original entry on oeis.org
1, 0, 1, -1, 0, 1, -1, -1, 0, 0, -2, -1, -1, 0, -2, -1, -2, -1, 0, 0, -6, -2, -1, -2, 0, 2, 0, -10, -2, -2, -1, 0, 2, 6, 0, -13, -2, -2, -2, 0, 46, 10, 0, -10, -1, -2, -2, 0, 2, 12, 10, 13, 0, 4, -2, -1, -2, 0, 4, 6, 10, 13, 10, 0, 36, -2, -2, -1, 0, 4, 12, 10, 26, 10, -4, 0, 84, -3
Offset: 1
First few rows of the triangle:
1;
0, 1;
-1, 0, 1;
-1, -1, 0, 0;
-2, -1, -1, 0, -2;
-1, -2, -1, 0, 0, -6;
-2, -1, -2, 0, 2, 0, -10;
-2, -2, -1, 0, 2, 6, 0, -13;
-2, -2, -2, 0, 4, 6, 10, 0, -10;
...
Row 5 = (-2, -1, -1, 0, -2) termwise products of (-2, -1, -1, 0, 1) and (1, 1, 1, 0, -2); = ((-2)*(1), (-1)*(1), (-1)*(1), (0)*(0), (1)*(-2)). (-2, -1, -1, 0, 1) = the first 5 terms of A002321, the Mertens's function. (1, 1, 1, 0, -2) = 5 shifted terms of A144031.
Original entry on oeis.org
1, 0, -4, -8, -32, -32, -128, -256, -512, -512, -2048, -4096, -12288, -16384, -16384, -32768, -131072, -262144, -786432, -1572864, -2097152, -2097152, -8388608, -16777216, -33554432, -33554432, -67108864, -134217728, -536870912, -1610612736, -4294967296
Offset: 1
-
from functools import lru_cache
@lru_cache(maxsize=None)
def A162459(n):
if n == 0:
return 0
c, j = n, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A162459(k1)//2**(k1-1)
j, k1 = j2, n//j2
return 2**(n-1)*(j-c) # Chai Wah Wu, Mar 30 2021
A180050
Triangle T(n,k) read by rows. n>3,k=1 T(n,k)=A002321(n-1). The rest of the table is described by the recurrence in the Excel formula.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, -1, -2, -3, 1, -1, 1, 3, -3, 1, -2, -3, -3, 2, -3, 1, -1, 2, 2, 0, 2, -3, 1, -2, -4, -3, 0, -1, 2, -3, 1, -2, 2, 3, -3, 3, -1, 2, -3, 1, -2, -4, -4, 3, -4, 2, -1, 2, -3, 1, -1, 3, 4, -1, 0, -1, 2, -1, 2, -3, 1, -2, -5, -5, 1, 1, -1, -2, 2, -1, 2, -3, 1, -2, 3, 4, -4, 3, -1, 2
Offset: 1
Table begins:
1,
1,1,
1,1,1,
-1,-2,-3,1,
-1,1,3,-3,1,
-2,-3,-3,2,-3,1,
-1,2,2,0,2,-3,1,
-2,-4,-3,0,-1,2,-3,1,
-2,2,3,-3,3,-1,2,-3,1,
-2,-4,-4,3,-4,2,-1,2,-3,1,
-1,3,4,-1,0,-1,2,-1,2,-3,1,
-2,-5,-5,1,1,-1,-2,2,-1,2,-3,1,
-2,3,4,-4,3,-1,2,-2,2,-1,2,-3,1,
-3,-6,-5,3,-4,2,-2,1,-2,2,-1,2,-3,1,
-
Using European dot comma style:
=if(row()>=column();if(row()<=3;1;if(column()=1; randbetween(-9;9);if(or(column()=2;column()=3);sum(indirect(address(row();column()-1; 4)))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4));sum(indirect(address(row()-column()+2; column()-1; 4)&":"&address(row()-1; column()-1; 4); 4))-sum(indirect(address(row()-column()+1; column(); 4)&":"&address(row()-1; column(); 4); 4)))));0)
-
Contribution from Mats Granvik, Aug 11 2010: (Start)
[from Wouter Meeussen, seqfan]
Clear[a];
a[r_,c_]:=0 /; c>r;
a[r_,c_]:=1 /; r<=3;
a[r_,1]:=Sum[MoebiusMu[k],{k,0,r-1}];
a[r_,c_]:=a[r,c-1]-Sum[a[r-j,c], {j,1,c-1}]/; c<=3;
a[r_,c_]:=a[r,c]=Sum[a[r-j,c-1], {j,1,c-2}]-Sum[a[r-j,c], {j,1,c-1}];
(m=Table[a[i,j],{i,14},{j,14}])//ColumnForm
(End)
A181587
If n is even, a(n) = 0, if n is odd, a(n) = A002321(n), where A002321 is Mertens's function.
Original entry on oeis.org
1, 0, -1, 0, -2, 0, -2, 0, -2, 0, -2, 0, -3, 0, -1, 0, -2, 0, -3, 0, -2, 0, -2, 0, -2, 0, -1, 0, -2, 0, -4, 0, -3, 0, -1, 0, -2, 0, 0, 0, -1, 0, -3, 0, -3, 0, -3, 0, -3, 0, -2, 0, -3, 0, -2, 0, -1, 0, -1, 0, -2, 0, -1, 0, 0, 0, -2, 0, -1, 0, -3, 0, -4, 0, -3, 0, -2, 0, -4, 0, -4, 0, -4, 0, -3, 0, -1, 0, -2, 0, -1, 0, 0, 0, 2
Offset: 1
A333831
Dirichlet inverse of Mertens function (A002321).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 4, 3, 2, 5, 2, 2, 4, 3, 7, 6, 1, 2, 8, 6, 1, 6, 5, 2, 9, 4, 8, 7, 2, 9, 13, 2, 1, 6, 10, 1, 10, 3, 7, 19, 2, 3, 16, 7, 7, 6, 8, 3, 14, 10, 14, 7, 0, 1, 31, 2, 1, 19, 8, 12, 7, 2, 6, 5, 14, 3, 35, 4, 3, 23, 9, 10, 11, 4, 24
Offset: 1
-
seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sum(k=1, n, moebius(k))))} \\ Andrew Howroyd, Apr 07 2020
A062983
Mertens's function of n (A002321) is not divisible by phi(n).
Original entry on oeis.org
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1
-
M[n_]:= Sum[MoebiusMu[k], {k, 1, n}]; Select[Range[250], Mod[M[#], EulerPhi[#]]!=0 &] (* Indranil Ghosh, Mar 16 2017 *)
-
M(n)=sum(k=1,n,moebius(k)); j=[]; for(n=1,250, if(Mod(M(n),eulerphi(n))!=0,j=concat(j,n))); j
A084235
Smallest k such that |M(k)| = 2^n, where M(x) is Mertens's function A002321.
Original entry on oeis.org
1, 5, 31, 199, 1637, 8507, 24110, 95961, 355541, 1786062, 6473791, 30649362, 109851909, 456774199, 2589994747, 7613644886, 37725066313, 108500046711
Offset: 1
- Karl Sabbagh, The Riemann Hypothesis, The Greatest Unsolved Problem in Mathematics, Farrar, Straus and Giroux, New York, 2002, page 191.
-
i = s = 0; Do[ While[ Abs[s] < 2^n, s = s + MoebiusMu[i]; i++ ]; Print[i - 1], {n, 0, 25}]
a(15)-a(18) by Ashley Jordan and
Luke March, Jul 22 2014
A106397
Binomial transform of Mertens's function sequence A002321.
Original entry on oeis.org
1, 1, 0, -3, -11, -30, -72, -162, -353, -756, -1598, -3334, -6868, -14002, -28368, -57374, -116233, -236165, -480781, -978293, -1984231, -4003365, -8028201, -16011129, -31812545, -63129395, -125452526, -250216779, -501567302
Offset: 0
A319502
Indices of Mertens's function M(n) (A002321) whose nearest neighbors have value 0.
Original entry on oeis.org
165, 237, 330, 354, 357, 365, 402, 406, 421, 426, 794, 797, 813, 885, 894, 897, 905, 914, 1257, 1281, 1290, 1298, 1301, 1337, 1522, 1526, 1545, 1842, 1865, 2094, 2098, 2118, 2121, 2137, 4602, 4609, 4621, 4629, 4726, 4729, 4738, 5106, 5109, 5198, 5206, 5221
Offset: 1
165 is a term because A002321(164) = A002321(166) = 0.
237 is a term because A002321(236) = A002321(238) = 0.
-
with(numtheory): a:=n->add(mobius(k),k=1..n): select(n->a(n-1)=0 and a(n+1)=0,[$2..2200]); # Muniru A Asiru, Sep 20 2018
-
With[{s = Partition[Accumulate@ Array[MoebiusMu, 5300], 3, 1]}, 1 + First /@ Position[s, {0, k_, 0} /; k != 0]] (* Michael De Vlieger, Sep 24 2018 *)
-
isok(n) = {if (n > 1, x = sum(k=1, n-1, moebius(k)); if (x == 0, if (x + moebius(n) + moebius(n+1) == 0, return (1)););); return (0);} \\ Michel Marcus, Sep 27 2018
A319520
Starts of strictly increasing runs of 0's in Mertens's function A002321.
Original entry on oeis.org
2, 39, 331, 422, 45371, 22898822, 871469945, 1319506393071, 26296710367071
Offset: 1
2 is a term because M(2) = 0.
39 is a term because M(39) = M(40) = 0.
331 is a term because M(331) = M(332) = M(333) = 0.
422 is a term because M(422) = ... = M(425) = 0.
45371 is a term because M(45371) = ... = M(45376) = 0.
-
With[{s = Map[Boole[# == 0] &, Accumulate@ Array[MoebiusMu, 10^5]]}, Union@ Array[SequencePosition[s, ConstantArray[1, #]][[1, 1]] &, 5]] (* Michael De Vlieger, Sep 26 2018 *)
-
M=S=R=0;for(n=1,oo,if(!M+=moebius(n),S||S=n,S,n-S>R&&print1(S",")+R=n-S;S=0)) \\ M. F. Hasler, Nov 23 2018
Comments