cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 64 results. Next

A072982 Primes p for which the period of 1/p is a power of 2.

Original entry on oeis.org

3, 11, 17, 73, 101, 137, 257, 353, 449, 641, 1409, 10753, 15361, 19841, 65537, 69857, 453377, 976193, 1514497, 5767169, 5882353, 6187457, 8253953, 8257537, 70254593, 167772161, 175636481, 302078977, 458924033, 639631361, 1265011073
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

All Fermat primes > 5 (A019434) are in the sequence, since it can be shown that the period of 1/(2^(2^n)+1) is 2^(2^n) whenever 2^(2^n)+1 is prime. - Benoit Cloitre, Jun 13 2007
Take all the terms from row 2^k of triangle in A046107 for k >= 0 and sort to arrive at this sequence. - Ray Chandler, Nov 04 2011
Additional terms, but not necessarily the next in sequence: 13462517317633 has period 1048576 = 2^20; 46179488366593 has period 2199023255552 = 2^41; 101702694862849 has period 8388608 = 2^23; 171523813933057 has period 4398046511104 = 2^42; 505775348776961 has period 2199023255552 = 2^41; 834427406578561 has period 64 = 2^6 - Ray Chandler, Nov 09 2011
Furthermore (excluding the initial term 3) this sequence is also the ascending sequence of primes dividing 10^(2^k)+1 for some nonnegative integer k. For a prime dividing 10^(2^k)+1, the period of 1/p is 2^(k+1). Thus for the prime p = 558711876337536212257947750090161313464308422534640474631571587847325442162307811\
65223702155223678309562822667655169, a factor of 10^(2^7)+1, the period of 1/p is only 2^8. This large prime then also belongs to the sequence. - Christopher J. Smyth, Mar 13 2014
For any m, every term that is not a factor of 10^(2^k)-1 for some k < m is congruent to 1 (mod 2^m). Thus all terms except 3, 11, 17, 73, 101, 137, 353, 449, 69857, 976193, 5882353, 6187457 are congruent to 1 (mod 128). - Robert Israel, Jun 17 2016
Additional terms listed earlier confirmed as next terms in sequence. - Arkadiusz Wesolowski, Jun 17 2016

Examples

			15361 has a period of 256 = 2^8, hence 15361 is in the sequence.
		

Crossrefs

Cf. A197224 (power of 2 which is the period of the decimal 1/a(n)).

Programs

  • Maple
    filter:= proc(p) local k;
      if not isprime(p) then return false fi;
      k:=igcd(p-1,2^ilog2(p));
      evalb(10 &^ k mod p = 1)
    end proc:
    r:= select(`<=`,`union`(seq(numtheory:-factorset(10^(2^k)-1),k=1..6)),10^9):
    b:= select(filter, {seq(i,i=129..10^9,128)}):
    sort(convert(r union b, list)); # Robert Israel, Jun 17 2016
  • Mathematica
    Do[ If[ IntegerQ[ Log[2, Length[ RealDigits[ 1/Prime[n]] [[1, 1]]]]], Print[ Prime[n]]], {n, 1, 47500}] (* Robert G. Wilson v, May 09 2007 *)
    pmax = 10^10; p = 1; While[p < pmax,p = NextPrime[p];If[ IntegerQ[Log[2, MultiplicativeOrder[10, p] ] ], Print[ p];];]; (* Ray Chandler, May 14 2007 *)
  • PARI
    select( {is_A072982(p)=if(p>5, 1<M. F. Hasler, Nov 18 2024
    
  • Python
    from itertools import count, islice
    from sympy import prime, n_order
    def A072982_gen(): return (p for p in (prime(n) for n in count(2)) if p != 5 and bin(n_order(10,p))[2:].rstrip('0') == '1')
    A072982_list = list(islice(A072982_gen(),10)) # Chai Wah Wu, Feb 07 2022
    
  • Python
    from sympy import primerange, n_order
    A072982_upto = lambda N=1e5: [p for p in primerange(3, N) if p != 5 and n_order(10, p).bit_count() == 1] # or (...) to get a generator. - M. F. Hasler, Nov 19 2024

Extensions

Edited by Robert G. Wilson v, Aug 20 2002
a(18) from Ray Chandler, May 02 2007
a(19) from Robert G. Wilson v, May 09 2007
a(20)-a(32) from Ray Chandler, May 14 2007
Deleted an unsatisfactory PARI program. - N. J. A. Sloane, Nov 19 2024

A337878 a(n) is the smallest m > 0 such that the n-th prime divides Jacobsthal(m).

Original entry on oeis.org

3, 4, 6, 5, 12, 8, 9, 22, 28, 10, 36, 20, 7, 46, 52, 29, 60, 33, 70, 18, 78, 41, 22, 48, 100, 102, 53, 36, 28, 14, 65, 68, 69, 148, 30, 52, 81, 166, 172, 89, 180, 190, 96, 196, 198, 105, 74, 113, 76, 58, 238, 24, 25, 16, 262, 268, 270, 92, 35, 47, 292, 51
Offset: 2

Views

Author

A.H.M. Smeets, Sep 27 2020

Keywords

Comments

All positive Jacobsthal numbers are odd, so the index starts at n = 2.
The set of primitive prime factors of J_k is given by {A000040(j) | a(j) = k}.
By definition, a(n) is the multiplicative order of -2 modulo the n-th prime for n > 2. - Jianing Song, Jun 20 2025

Examples

			The 4th prime number is 7, and 7 divides 21 which is Jacobsthal(6), so a(4) = 6. The second prime number, 3, divides Jacobsthal(6) as well, but it divides also the smaller Jacobsthal(3), i.e., a(2) = 3.
		

Crossrefs

Cf. A000040 (primes), A001045 (Jacobsthal numbers), A001602 (similar for Fibonacci numbers), A105874 (primes having primitive root -2), A129738.
Cf. multiplicative orders of 2..10: A014664, A062117, A082654, A211241, A211242, A211243, A211244, A211245, A002371.
Cf. multiplicative orders of -2..-10: this sequence (if first term 1), A380482, A380531, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    m = 300; j = LinearRecurrence[{1, 2}, {3, 5}, m]; s = {}; p = 3; While[(ind = Select[Range[m], Divisible[j[[#]], p] &, 1]) != {}, AppendTo[s, ind[[1]] + 2]; p = NextPrime[p]]; s (* Amiram Eldar, Sep 28 2020 *)
  • PARI
    J(n) = (2^n - (-1)^n)/3; \\ A001045
    a(n) = {my(k=1, p=prime(n)); while (J(k) % p, k++); k;} \\ Michel Marcus, Sep 29 2020
  • Python
    n = 1
    while n < 63:
        n, J0, J1, a = n+1, 3, 1, 3
        p = A000040(n)
        J0 = J0%p
        while J0 != 0:
            J0, J1, a = (J0+2*J1)%p, J0, a+1
        print(n,a)
    

Formula

A000040(n) == 1 (mod a(n)) for n > 2.

A380482 a(n) is the multiplicative order of -3 modulo prime(n); a(2) = 0 for completion.

Original entry on oeis.org

1, 0, 4, 3, 10, 6, 16, 9, 22, 28, 15, 9, 8, 21, 46, 52, 58, 5, 11, 70, 12, 39, 82, 88, 48, 100, 17, 106, 54, 112, 63, 130, 136, 69, 148, 25, 39, 81, 166, 172, 178, 90, 190, 16, 196, 99, 105, 111, 226, 114, 232, 238, 120, 250, 256, 262, 268, 15, 138, 280
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105875 (primes having primitive root -3).
Cf. bases -2..-10: A337878 (if first term 1), this sequence, A380531, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380482[n_] := If[n == 2, 0, MultiplicativeOrder[-3, Prime[n]]];
    Array[A380482, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-3}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380531 a(n) is the multiplicative order of -4 modulo prime(n); a(1) = 0 for completion.

Original entry on oeis.org

0, 2, 1, 6, 10, 3, 4, 18, 22, 7, 10, 9, 5, 14, 46, 13, 58, 15, 66, 70, 18, 78, 82, 22, 24, 25, 102, 106, 9, 7, 14, 130, 17, 138, 37, 30, 13, 162, 166, 43, 178, 45, 190, 48, 49, 198, 210, 74, 226, 19, 58, 238, 12, 50, 8, 262, 67, 270, 23, 70
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Comments

a(n) divides (p-1)/4 if p = prime(n) == 1 (mod 4), since (-4)^((p-1)/4) == (+-1+-i)^(p-1) == 1 (mod p), where i^2 == -1 (mod p).

Crossrefs

Cf. A105876 (primes having primitive root -4).
Cf. bases -2..-10: A337878 (if first term 1), A380482, this sequence, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380531[n_] := If[n == 1, 0, MultiplicativeOrder[-4, Prime[n]]];
    Array[A380531, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-4}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380532 a(n) is the multiplicative order of -5 modulo prime(n); a(3) = 0 for completion.

Original entry on oeis.org

1, 1, 0, 3, 10, 4, 16, 18, 11, 7, 6, 36, 20, 21, 23, 52, 58, 15, 11, 10, 72, 78, 41, 44, 96, 50, 51, 53, 54, 112, 21, 130, 136, 138, 74, 150, 156, 27, 83, 172, 178, 30, 38, 192, 196, 66, 70, 111, 113, 57, 232, 238, 40, 50, 256, 131, 134, 54, 276, 140
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105877 (primes having primitive root -5).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, this sequence, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380532[n_] := If[n == 3, 0, MultiplicativeOrder[-5, Prime[n]]];
    Array[A380532, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-5}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A072859 Primes p for which the period of 1/p is prime.

Original entry on oeis.org

11, 37, 41, 53, 79, 83, 107, 173, 227, 239, 271, 317, 347, 359, 467, 479, 563, 587, 643, 719, 733, 773, 797, 839, 907, 1031, 1187, 1231, 1283, 1307, 1319, 1439, 1493, 1523, 1627, 1637, 1879, 1907, 1987, 2027, 2039, 2467, 2477, 2677, 2791, 2837, 2879, 2963
Offset: 1

Views

Author

Benoit Cloitre, Jul 26 2002

Keywords

Comments

Primes p such that the multiplicative order of 10 (mod p) is prime. - Joerg Arndt, Oct 26 2014
Together with 3, complement in primes of A249330. - Arkadiusz Wesolowski, Oct 25 2014

Examples

			1/37 = 0. 027 027 ... with period = 3, hence 37 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[MultiplicativeOrder[10,#]]&] (* Ray Chandler, Oct 31 2011 *)
  • PARI
    f(n)=if(n<4,n==2,znorder(Mod(10, prime(n))));
    for(n=1,100,if(isprime(f(n))==1,print1(prime(n),", ")))

A380533 a(n) is the multiplicative order of -6 modulo prime(n); a(1) = a(2) = 0 for completion.

Original entry on oeis.org

0, 0, 2, 1, 5, 12, 16, 18, 22, 7, 3, 4, 40, 6, 46, 13, 29, 60, 66, 70, 36, 39, 41, 88, 12, 5, 51, 53, 108, 112, 63, 65, 136, 46, 74, 75, 156, 54, 166, 86, 89, 60, 38, 96, 7, 99, 210, 111, 113, 228, 232, 34, 20, 125, 256, 262, 67, 135, 276, 56
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105878 (primes having primitive root -6).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, this sequence, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380533[n_] := If[n < 3, 0, MultiplicativeOrder[-6, Prime[n]]];
    Array[A380533, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-6}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380540 a(n) is the multiplicative order of -7 modulo prime(n); a(4) = 0 for completion.

Original entry on oeis.org

1, 2, 4, 0, 5, 12, 16, 6, 11, 14, 30, 18, 40, 3, 46, 13, 58, 60, 33, 35, 24, 39, 82, 88, 96, 100, 102, 53, 54, 7, 63, 130, 68, 138, 37, 75, 52, 81, 166, 172, 89, 12, 5, 24, 49, 198, 105, 74, 226, 228, 116, 119, 240, 250, 256, 131, 268, 270, 69, 20
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105879 (primes having primitive root -7).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, this sequence, A380541, A380542, A385222.

Programs

  • Mathematica
    A380540[n_] := If[n == 4, 0, MultiplicativeOrder[-7, Prime[n]]];
    Array[A380540, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-7}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380541 a(n) is the multiplicative order of -8 modulo prime(n); a(1) = 0 for completion.

Original entry on oeis.org

0, 1, 4, 2, 5, 4, 8, 3, 22, 28, 10, 12, 20, 7, 46, 52, 29, 20, 11, 70, 6, 26, 41, 22, 16, 100, 34, 53, 12, 28, 14, 65, 68, 23, 148, 10, 52, 27, 166, 172, 89, 60, 190, 32, 196, 66, 35, 74, 113, 76, 58, 238, 8, 25, 16, 262, 268, 90, 92, 35
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105880 (primes having primitive root -8).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, A380540, this sequence, A380542, A385222.

Programs

  • Mathematica
    A380541[n_] := If[n == 1, 0, MultiplicativeOrder[-8, Prime[n]]];
    Array[A380541, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-8}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

Formula

a(n) = ord(-2,p)/gcd(ord(-2,p),3) for p != 2, where p = prime(n), and ord(a,m) is the multiplicative order of a modulo m. Note that ord(-2,p) = A337878(n) for n > 2.

A380542 a(n) is the multiplicative order of -9 modulo prime(n); a(2) = 0 for completion.

Original entry on oeis.org

1, 0, 1, 6, 10, 6, 8, 18, 22, 7, 30, 18, 4, 42, 46, 13, 58, 10, 22, 70, 3, 78, 82, 44, 24, 25, 34, 106, 54, 56, 126, 130, 68, 138, 37, 50, 78, 162, 166, 43, 178, 90, 190, 8, 49, 198, 210, 222, 226, 114, 116, 238, 60, 250, 128, 262, 67, 30, 138, 140
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105881 (primes having primitive root -9).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, A380540, A380541, this sequence, A385222.

Programs

  • Mathematica
    A380542[n_] := If[n == 2, 0, MultiplicativeOrder[-9, Prime[n]]];
    Array[A380542, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-9}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))
Previous Showing 21-30 of 64 results. Next