cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A197224 Exponent in the power of 2 which is the period of the decimal fraction 1/A072982(n).

Original entry on oeis.org

0, 1, 4, 3, 2, 3, 8, 5, 5, 5, 5, 9, 8, 6, 16, 5, 8, 6, 10, 16, 4, 6, 9, 17, 20, 21, 18, 10, 13, 19, 7, 27, 9, 30, 9, 12, 20, 30, 36, 20, 41, 23, 42, 41, 6
Offset: 1

Views

Author

T. D. Noe, Oct 21 2011

Keywords

Comments

This means that the fraction 1/52613349377 repeats every 2^30 terms!
Every term with value up to 6 is accounted for.

Crossrefs

Programs

  • Mathematica
    Table[Log[2, MultiplicativeOrder[10, p]], {p, A072982}] (* Ray Chandler, Oct 25 2019 *)

Formula

a(n+1) = A274512(n) + 1. - Ray Chandler, Oct 25 2019

Extensions

a(37)-a(39) from Ray Chandler, Nov 03 2011
a(40)-a(45) from Ray Chandler, Oct 25 2019

A274512 a(n) is the only number m such that 10^(2^m) + 1 is divisible by A072982(n+1).

Original entry on oeis.org

0, 3, 2, 1, 2, 7, 4, 4, 4, 4, 8, 7, 5, 15, 4, 7, 5, 9, 15, 3, 5, 8, 16, 19, 20, 17, 9, 12, 18, 6, 26, 8, 29, 8, 11, 19, 29, 35, 19, 40, 22, 41, 40, 5
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 25 2016

Keywords

Crossrefs

Programs

  • PARI
    forstep(p=3, 10^15, 2, if(!Mod(p, 5)==0, if(isprime(p), o=znorder(Mod(10, p)); x=ispower(2*o); if(2^(x-1)==o, print1(x-2, ", ")))));

Formula

a(n) = A197224(n+1) - 1. - Ray Chandler, Oct 25 2019

A273950 Prime factors of generalized Fermat numbers of the form 12^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 13, 17, 29, 89, 97, 233, 257, 769, 36097, 40961, 65537, 81281, 153953, 163841, 260753, 1724417, 4550657, 5767169, 8253953, 11304961, 13631489, 21495809, 69619841, 77651969, 147849217, 158334977, 159522817, 1711276033, 6528575489, 27286044673, 52613349377
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Primes p such that the multiplicative order of 12 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A152585, A268660, A268664, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[12, #]] &]

A273945 Odd prime factors of generalized Fermat numbers of the form 3^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 41, 193, 257, 12289, 59393, 65537, 275201, 786433, 790529, 8972801, 13631489, 21523361, 134382593, 155189249, 448524289, 524455937, 847036417, 3221225473, 12348030977, 22320686081, 77309411329, 206158430209, 4638564679681, 6597069766657, 12079910333441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 3 (mod p) is a power of 2.

Crossrefs

Cf. A023394, A059919, A072982, A268657, A268661, A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[3, #]] &]

A273946 Odd prime factors of generalized Fermat numbers of the form 5^(2^m) + 1 with m >= 0.

Original entry on oeis.org

3, 13, 17, 257, 313, 641, 769, 2593, 11489, 19457, 65537, 163841, 786433, 1503233, 1655809, 7340033, 14155777, 18395137, 23606273, 29423041, 39714817, 75068993, 167772161, 2483027969, 4643094529, 6616514561, 47148957697, 241931001601, 2748779069441
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p such that the multiplicative order of 5 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A199591, A268658, A268662, A273945 (base 3), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[5, #]] &]

A273947 Prime factors of generalized Fermat numbers of the form 6^(2^m) + 1 with m >= 0.

Original entry on oeis.org

7, 17, 37, 257, 353, 1297, 1697, 2753, 18433, 65537, 80897, 98801, 145601, 763649, 3360769, 4709377, 13631489, 50307329, 376037377, 2483027969, 3191106049, 4926056449, 51808043009, 152605556737, 916326983681, 1268357529601, 6597069766657, 40711978221569
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Primes p other than 5 such that the multiplicative order of 6 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A078303, A268663, A273945 (base 3), A273946 (base 5), A273948 (base 7), A273949 (base 11), A273950 (base 12).

Programs

  • Mathematica
    Select[Prime@Range[4, 10^5], IntegerQ@Log[2, MultiplicativeOrder[6, #]] &]

A273948 Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.

Original entry on oeis.org

5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
From Robert Israel, Jun 16 2016: (Start)
If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
The intersection of this sequence and A019337 is A019434 minus {3}. (End)

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).

Programs

  • Maple
    filter:= proc(t)
      if not isprime(t) then return false fi;
      7 &^ (2^padic:-ordp(t-1,2)) mod t = 1
    end proc:
    select(filter, [seq(i,i=5..10^6,2)]); # Robert Israel, Jun 16 2016
  • Mathematica
    Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]

A273949 Odd prime factors of generalized Fermat numbers of the form 11^(2^m) + 1 with m >= 0.

Original entry on oeis.org

3, 17, 61, 193, 257, 7321, 15361, 51329, 65537, 163841, 6304673, 15190529, 70254593, 1691123713, 1760464897, 3221225473, 3489660929, 4696846849, 6874464257, 53401878529, 111489577217, 149300051969, 184683593729, 206158430209, 447600088289, 1819992391681
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 05 2016

Keywords

Comments

Odd primes p other than 5 such that the multiplicative order of 11 (mod p) is a power of 2.

References

  • Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.

Crossrefs

Cf. A023394, A072982, A199592, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273950 (base 12).

Programs

  • Mathematica
    Delete[Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[11, #]] &], 2]

A128948 Primes p for which the period length of 1/p is a perfect power, A001597.

Original entry on oeis.org

3, 17, 73, 101, 137, 163, 257, 353, 449, 577, 641, 751, 757, 883, 1297, 1409, 1801, 3137, 3529, 5477, 7057, 7351, 8929, 9397, 10753, 11831, 12101, 13457, 13553, 14401, 15361, 15377, 15973, 18523, 19841, 20809, 21401, 21601, 23549, 24001, 24337
Offset: 1

Views

Author

Robert G. Wilson v, May 05 2007

Keywords

Comments

Number of primes p < 10^n whose period length of 1/p is a perfect power: 1,3,14,24,78,173,461,1190,3235,8933,....
The primes modulo any integer do not seem to be equally distributed.

Examples

			The prime 73 has a period of 8 = 2^3 which is a member of A001597, hence is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    lst = {3}; p = 1; While[p < 10^8, p = NextPrime@p; If[GCD @@ Last /@ FactorInteger@ MultiplicativeOrder[10, p] > 1, AppendTo[lst, p]; Print@p]]; lst (* Ray Chandler, May 11 2007 *)

Extensions

Correction (3 is a member of the sequence) from Ray Chandler, May 11 2007
B-file corrected by Ray Chandler, Oct 23 2011

A197225 Primes p with the period of the decimal fraction 1/p a prime power, A000961.

Original entry on oeis.org

3, 11, 17, 37, 41, 53, 73, 79, 83, 101, 107, 137, 163, 173, 227, 239, 257, 271, 317, 347, 353, 359, 449, 467, 479, 563, 587, 641, 643, 719, 733, 751, 757, 773, 797, 839, 907, 1031, 1187, 1231, 1283, 1307, 1319, 1409, 1439, 1493, 1523, 1627, 1637, 1879, 1907
Offset: 1

Views

Author

T. D. Noe, Oct 22 2011

Keywords

Crossrefs

Cf. A072859 (period is prime).
Cf. A072982 (period is a power of 2).
Cf. A128948 (period is perfect power).
Cf. A197226 (the periods of this sequence).
Cf. A129727 (period is a semiprime).

Programs

  • Mathematica
    myPerfectPowerQ[n_] := Length[FactorInteger[n]] == 1; Select[Prime[Range[500]], Mod[10,#] > 0 && myPerfectPowerQ[Length[RealDigits[1/#, 10][[1,1]]]] &]
Showing 1-10 of 11 results. Next