cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-54 of 54 results.

A147297 Primes of the form (2k)^2 + 3(2k + 1)^2.

Original entry on oeis.org

31, 307, 463, 1123, 1723, 3307, 4831, 6007, 8011, 10303, 11131, 13807, 20023, 23563, 26083, 30103, 35911, 43891, 60271, 86143, 95791, 108571, 127807, 136531, 145543, 164431, 205663, 239611, 276151, 284623, 288907, 366631, 371491, 386263, 459007
Offset: 1

Views

Author

Kieren MacMillan, Nov 05 2008

Keywords

Crossrefs

First thirteen terms are a subset of A073337, A002383 and A085104.

Programs

  • Magma
    [ a: n in [1..900] | IsPrime(a) where a is (2*n)^2 + 3*(2*n+1)^2] // Vincenzo Librandi, Nov 25 2010
  • Maxima
    makelist((2*k)^2+3*(2*k+1)^2,k,1,100)$ sublist(%,primep);
    

Extensions

More terms from Vincenzo Librandi, Apr 28 2010

A237366 Primes p such that f(f(p)) is prime where f(x) = x^2+x+1.

Original entry on oeis.org

7, 19, 31, 67, 127, 181, 223, 241, 331, 367, 409, 463, 487, 673, 709, 751, 811, 823, 883, 997, 1117, 1231, 1321, 1489, 1549, 1861, 1933, 2083, 2179, 2287, 2473, 2551, 2707, 2803, 2851, 2857, 2917, 2971, 3067, 3361, 3499, 3559, 3691, 3847, 3931
Offset: 1

Views

Author

Derek Orr, Feb 06 2014

Keywords

Examples

			31 is prime and (31^2+31+1)^2+(31^2+31+1)+1 = 987043 is prime. Thus, 31 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    s=[]; forprime(p=2, 4000, if(isprime(p^4+2*p^3+4*p^2+3*p+3), s=concat(s, p))); s \\ Colin Barker, Feb 07 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n) and isprime((n**2+n+1)**2+(n**2+n+1)+1)}
    

A306759 Decimal expansion of the sum of reciprocals of Brazilian primes, also called the Brazilian primes constant.

Original entry on oeis.org

3, 3, 1, 7, 5, 4, 4, 6, 6
Offset: 0

Views

Author

Bernard Schott, Mar 08 2019

Keywords

Comments

The name "constant of Brazilian primes" is used in the article "Les nombres brésiliens" in link, théorème 4, page 36. Brazilian primes are in A085104.
Let S(k) be the sum of reciprocals of Brazilian primes < k. These values below come from different calculations by Jon, Michel, Daniel and Davis.
q S(10^q)
== ========================
1 0.1428571428571428571... (= 1/7)
2 0.2889927283868234859...
3 0.3229022355626914481...
4 0.3295236806353669357...
5 0.3312171311946179843...
6 0.3316038696349217289...
7 0.3317139158654747333...
8 0.3317434191078170412...
9 0.3317513267394988538...
10 0.3317535651668937256...
11 0.3317542057931842329...
12 0.3317543906772274268...
13 0.3317544444033188051...
14 0.3317544601136967527...
15 0.3317544647354485208...
16 0.3317544661014868080...
17 0.3317544665073451951...
18 0.3317544666282877863...
19 0.3317544666644601817...
20 0.3317544666753095766...
According to the Goormaghtigh conjecture, there are only two Brazilian primes which are twice Brazilian: 31 = (111)_5 = (11111)_2 and 8191 = (111)_90 = (1111111111111)_2. The reciprocals of these two numbers are counted only once in the sum.

Examples

			1/7 + 1/13 + 1/31 + 1/43 + 1/73 + 1/127 + 1/157 + ... = 0.33175...
		

References

  • Daniel Lignon, Dictionnaire de (presque) tous les nombres entiers, Ellipses, Paris, 2012, page 175.

Crossrefs

Cf. A085104 (Brazilian primes), A002383 (Brazilian primes (111)_b), A225148 (Brazilian primes of the form (b^q-1)/(b-1) with q prime >= 5).
Cf. A173898 (sum of the reciprocals of the Mersenne primes), A065421 (Brun's constant).

Programs

  • PARI
    brazil(N, L=List())=forprime(K=3, #binary(N+1)-1, for(n=2, sqrtnint(N-1, K-1), if(isprime((n^K-1)/(n-1)),listput(L, (n^K-1)/(n-1))))); Set(L);
    brazilcons(lim,nbd) = r=brazil(10^lim); x=sum(M=1, #r, 1./r[M]);for(n=1, nbd, print1(floor(x*10^n)%10, ", "));\\ Davis Smith, Mar 10 2019
    
  • PARI
    cons(lim)=my(v=List(), t, k); for(n=2, sqrt(lim), t=1+n; k=1; while((t+=n^k++)<=lim, if(isprime(t), listput(v, t)))); v = vecsort(Vec(v), , 8); sum(k=1, #v, 1./v[k]); \\ Michel Marcus, Mar 11 2019

Formula

Equals Sum_{n>=1} 1/A085104(n).

A308316 Numbers m such that q = 2^m - 1 and r = m^2 + m + 1 are both primes.

Original entry on oeis.org

2, 3, 5, 17, 89, 9689, 11213, 2976221
Offset: 1

Views

Author

Jaroslav Krizek, May 19 2019

Keywords

Comments

All terms are primes.
Mersenne exponents p from A000043 such that p^2 + p + 1 is a prime.
Intersection of A000043 and A002384.
Corresponding values of primes q: 3, 7, 31, 131071, 618970019642690137449562111, ...
Corresponding values of primes r: 7, 13, 31, 307, 8011, 93886411, 125742583, 8857894417063, ...

Crossrefs

Programs

  • Magma
    [m: m in [1..1000] | IsPrime(2^m - 1)  and IsPrime(m^2 + m + 1)]
    
  • PARI
    isok(n) = isprime(2^n-1) && isprime(n^2+n+1); \\ Michel Marcus, May 21 2019
Previous Showing 51-54 of 54 results.