cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A057477 Numbers k such that x^k + x^7 + 1 is irreducible over GF(2).

Original entry on oeis.org

1, 3, 4, 6, 10, 12, 15, 18, 21, 25, 31, 34, 42, 52, 55, 57, 105, 127, 172, 210, 220, 300, 393, 420, 441, 492, 772, 807, 972, 1023, 1071, 1266, 1564, 2220, 2242, 3297, 3585, 5314, 6300, 7306, 8719, 10777, 23647, 26119, 33127, 44247, 48036, 48945, 59172, 68841
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

The b-file contains all terms <= 300000. - Lucas A. Brown, Nov 28 2022

Crossrefs

Cf. A002475.

Programs

  • PARI
    is(k) = polisirreducible(Mod(1, 2)*(x^k + x^7 + 1)); \\ Jinyuan Wang, Apr 15 2020

Extensions

a(27)-a(40) from Jinyuan Wang, Apr 15 2020
a(41)-a(58) from Lucas A. Brown, Nov 28 2022

A057478 Numbers k such that x^k + x^8 + 1 is irreducible over GF(2).

Original entry on oeis.org

9, 15, 39, 105, 119, 153, 177, 209, 3143, 13169, 19833, 33567, 53129, 64439, 88871, 109865, 122945, 138543
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

Any subsequent terms are > 300000. - Lucas A. Brown, Nov 28 2022

Crossrefs

Cf. A002475.

Programs

  • PARI
    is(k) = polisirreducible(Mod(1, 2)*(x^k + x^8 + 1)); \\ Jinyuan Wang, Apr 15 2020

Extensions

a(9) from Jinyuan Wang, Apr 15 2020
a(10)-a(18) from Lucas A. Brown, Nov 28 2022

A057480 Numbers k such that x^k + x^10 + 1 is irreducible over GF(2).

Original entry on oeis.org

3, 7, 33, 111, 279, 511, 1047, 1239, 8119, 15727, 16153, 22617, 38407
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

Any subsequent terms are > 300000. - Lucas A. Brown, Nov 28 2022

Crossrefs

Cf. A002475.

Programs

  • PARI
    is(k) = polisirreducible(Mod(1, 2)*(x^k + x^10 + 1)); \\ Jinyuan Wang, Apr 15 2020

Extensions

a(7)-a(8) from Jinyuan Wang, Apr 15 2020
a(9)-a(13) from Lucas A. Brown, Nov 28 2022

A057482 Numbers n such that x^n + x^12 + 1 is irreducible over GF(2).

Original entry on oeis.org

3, 5, 7, 9, 17, 49, 97, 257, 425, 895, 1385, 4807, 11303, 25175, 103943, 104975, 161993, 282455
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

Any subsequent terms are > 300000.

Crossrefs

Cf. A002475.

Programs

  • PARI
    is(k) = polisirreducible(Mod(1, 2)*(x^k + x^12 + 1)); \\ Jinyuan Wang, Apr 15 2020

Extensions

a(10)-a(11) from Jinyuan Wang, Apr 15 2020
a(12)-a(18) from Lucas A. Brown, Nov 29 2022

A057483 Numbers n such that x^n + x^13 + 1 is irreducible over GF(2).

Original entry on oeis.org

28, 31, 33, 84, 87, 103, 174, 414, 574, 687, 780, 1111, 1449, 1860, 6964, 7708, 11700, 17428, 19398, 19876, 78391, 131305, 136564, 181684
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

Any subsequent terms are > 300000.

Crossrefs

Cf. A002475.

Programs

  • PARI
    is(k) = polisirreducible(Mod(1, 2)*(x^k + x^13 + 1)); \\ Jinyuan Wang, Apr 15 2020

Extensions

a(11)-a(14) from Jinyuan Wang, Apr 15 2020
a(15)-a(24) from Lucas A. Brown, Nov 29 2022

A058857 Numbers n such that the trinomial x^n + x + 1 is irreducible over GF(7).

Original entry on oeis.org

0, 1, 3, 4, 9, 33, 52, 177, 1042, 2799, 5950, 8595, 19438
Offset: 1

Views

Author

Robert G. Wilson v, Jan 05 2001

Keywords

Comments

No other terms <= 4000. - Eric M. Schmidt, Feb 10 2014
Next term > 2*10^4. [Joerg Arndt, Mar 02 2016]

Crossrefs

Cf. A002475 (GF(2)), A058334 (GF(5)).

Programs

  • PARI
    isok(n) = polisirreducible(Mod(1, 7)*(x^n + x + 1)); \\ Michel Marcus, Feb 11 2014
  • Sage
    def isA058857(n) : x = GF(7)['x'].0; return (x^n + x + 1).is_irreducible() # Eric M. Schmidt, Feb 10 2014
    

Extensions

a(1), a(2) and a(10) from Eric M. Schmidt, Feb 10 2014
a(11) - a(13) from Joerg Arndt, Mar 02 2016

A074710 Numbers k such that x^k + x^2 + 1 is a primitive irreducible polynomial over GF(2).

Original entry on oeis.org

1, 3, 5, 11, 21, 29, 35, 93, 123, 333, 845
Offset: 1

Views

Author

Richard P. Brent, Sep 05 2002

Keywords

Comments

Agrees with A057460 as far as it goes, but is a different sequence.
The next candidate is 4125.

Crossrefs

Cf. A002475.

A223938 Numbers n such that the trinomial x^n-x-1 is irreducible over GF(3).

Original entry on oeis.org

2, 3, 4, 5, 6, 13, 14, 17, 30, 40, 41, 51, 54, 73, 121, 137, 364, 446, 485, 638, 925, 1382, 1478, 2211, 2726, 5581, 5678, 6424, 8524, 10649, 15990, 17174, 18685, 18889, 27461, 29523, 30677, 39641, 42038, 58566, 71380, 72781, 82493
Offset: 1

Views

Author

Joerg Arndt, Mar 29 2013

Keywords

Comments

Any subsequent terms are > 10^5. - Lucas A. Brown, Dec 11 2022

Crossrefs

Cf. A002475 (n such that x^n-x-1 is irreducible over GF(2)).

Programs

  • Mathematica
    Reap[ Do[ If[ Factor[x^n - x - 1, Modulus -> 3][[0]] =!= Times, Print[n]; Sow[n]], {n, 2, 3000}]][[2, 1]] (* Jean-François Alcover, Apr 03 2013 *)
    Select[Range[1000], IrreduciblePolynomialQ[x^# - x - 1, Modulus -> 3] &] (* Robert Price, Sep 19 2018 *)
  • PARI
    for (n=1, 10^6, if ( polisirreducible(Mod(1, 3)*(x^n-x-1)), print1(n, ", ") ) );
  • Sage
    P. = GF(3)[]
    for n in range(10^6):
           if (x^n-x-1).is_irreducible():
               print(n)
    

Extensions

a(35)-a(43) from Lucas A. Brown, Dec 11 2022

A278572 Irregular triangle read by rows: row n lists values of k in range 1 <= k <= n/2 such x^n + x^k + 1 is irreducible (mod 2), or -1 if no such k exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, -1, 1, 4, 3, 2, 3, 5, -1, 5, 1, 4, 7, -1, 3, 5, 6, 3, 7, 9, -1, 3, 5, 2, 7, 1, 5, 9, -1, 3, 7, -1, -1, 1, 3, 9, 13, 2, 1, 9, 3, 6, 7, 13, -1, 10, 13, 7, 2, 9, 11, 15, -1, -1, 4, 8, 14, -1, 3, 20, 7, -1, 5, -1, 1, 5, 14, 20, 21, -1
Offset: 2

Views

Author

N. J. A. Sloane, Nov 27 2016

Keywords

Comments

This is the format used by John Brillhart (1968) and Zierler and Brillhart (1968).

Examples

			Triangle begins:
1,
1,
1,
2,
1, 3,
1, 3,
-1,
1, 4,
3,
2,
3, 5,
-1,
5,
1, 4, 7,
-1,
3, 5, 6,
...
		

References

  • Alanen, J. D., and Donald E. Knuth. "Tables of finite fields." Sankhyā: The Indian Journal of Statistics, Series A (1964): 305-328.
  • John Brillhart, On primitive trinomials (mod 2), unpublished Bell Labs Memorandum, 1968.
  • Marsh, Richard W. Table of irreducible polynomials over GF (2) through degree 19. Office of Technical Services, US Department of Commerce, 1957.

Crossrefs

Rows n that contain particular numbers: 1 (A002475), 2 (A057460), 3 (A057461), 4 (A057463), 5 (A057474), 6 (A057476), 7 (A057477), 8 (A057478), 9 (A057479), 10 (A057480), 11 (A057481), 12 (A057482), 13 (A057483).

Programs

  • Maple
    T:= proc(n) local L; L:= select(k -> Irreduc(x^n+x^k+1) mod 2, [$1..n/2]); if L = [] then -1 else op(L) fi
    end proc:
    map(T, [$2..100]); # Robert Israel, Mar 28 2017
  • Mathematica
    DeleteCases[#, 0] & /@ Table[Boole[IrreduciblePolynomialQ[x^n + x^# + 1, Modulus -> 2]] # & /@ Range[Floor[n/2]], {n, 2, 40}] /. {} -> {-1} // Flatten (* Michael De Vlieger, Mar 28 2017 *)

A057474 Numbers k such that x^k + x^5 + 1 is irreducible over GF(2).

Original entry on oeis.org

2, 3, 6, 9, 12, 14, 17, 20, 23, 44, 47, 63, 84, 129, 236, 278, 279, 297, 300, 647, 726, 737, 2574, 2660, 4233, 4500, 8207, 11900, 16046, 21983, 23999, 24596, 24849, 84929, 130926, 156308, 160046, 185142, 270641
Offset: 1

Views

Author

Robert G. Wilson v, Sep 27 2000

Keywords

Comments

Any subsequent terms are > 300000. - Lucas A. Brown, Nov 28 2022

Crossrefs

Cf. A002475.

Programs

  • Sage
    P. = GF(2)[]
    for n in range(10^4):
        if (x^n+x^5+1).is_irreducible():
            print(n) # Joerg Arndt, Apr 28 2012

Extensions

a(23)-a(34) by Joerg Arndt, Apr 28 2012
a(35)-a(38) by Manfred Scheucher, Aug 18 2015
a(39) from Lucas A. Brown, Nov 28 2022
Previous Showing 11-20 of 23 results. Next