A054857
Number of ways to tile a 5 X n region with square tiles of size up to 5 X 5.
Original entry on oeis.org
1, 1, 8, 28, 117, 472, 1916, 7765, 31497, 127707, 517881, 2100025, 8515772, 34532063, 140030059, 567832091, 2302600696, 9337214060, 37863085664, 153537580071, 622606110920, 2524713292359, 10237896957896, 41515420557135
Offset: 0
Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
a(2) = 8 as there is 1 tiling of a 5 X 2 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 3 tilings with exactly two 2 X 2 tiles.
-
f[ {A_, B_} ] := Module[ {til = A, basic = B}, {Flatten[ Append[ til, ListConvolve[ A, B ] ] ], AppendTo[ basic, B[ [ -1 ] ] + B[ [ -2 ] ] + B[ [ -3 ] ] ]} ]; NumOfTilings[ n_ ] := Nest[ f, {{1, 1, 8, 28, 117, 472, 1916, 7765}, {1, 7, 13, 20, 35, 66, 118, 218}}, n - 2 ][ [ 1 ] ] NumOfTilings[ 30 ]
A264364
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,0 0,2 1,0 or -1,-2.
Original entry on oeis.org
1, 3, 1, 9, 6, 1, 18, 36, 13, 1, 36, 120, 169, 28, 1, 78, 400, 936, 784, 60, 1, 169, 1440, 5184, 7168, 3600, 129, 1, 364, 5184, 33408, 65536, 54720, 16641, 277, 1, 784, 18432, 215296, 730368, 831744, 418992, 76729, 595, 1, 1680, 65536, 1323792, 8139609
Offset: 1
Some solutions for n=4 k=4
..0..1..2..3..4....7..8..0..3..2....0..8..2..1..4....0..1..2..3..4
.12..6..7..8..9...12..1..5..6..4...12.13.14..3..7...12..6.14..8..7
..5.18.19.11.14...17.18.10.13..9....5..6.19.11..9....5.11.10.13..9
.10.16.24.13.17...22.11.24.16.14...10.16.24.18.17...15.23.24.16.19
.15.21.20.23.22...15.21.20.23.19...15.21.20.23.22...20.21.17.18.22
A359019
Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 21, 39, 82, 163, 347, 717, 1533, 3232, 6927, 14748, 31645, 67690, 145322, 311535, 668997, 1435645, 3083301, 6619842, 14218066, 30533005, 65580338, 140847132, 302522253, 649759735, 1395611508, 2997573501, 6438470626, 13829057884, 29703388721, 63799607283, 137035047576, 294336860797, 632205714741
Offset: 0
a(4) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359020
Number of inequivalent tilings of a 4 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 4, 6, 13, 39, 115, 295, 861, 2403, 7048, 20377, 60008, 175978, 519589, 1532455, 4531277, 13395656, 39639758, 117301153, 347248981, 1028011708, 3043852214, 9012879842, 26689014028, 79033362580, 234045889421, 693101137571, 2052569508948
Offset: 0
a(3) is 6 because of:
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+
| | | | | | | | | | | | | | | | | |
+-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+
| | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+
| | | | | | | | | | | | | | | | | | | |
+-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359021
Number of inequivalent tilings of a 5 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 5, 10, 39, 77, 521, 1985, 8038, 32097, 130125, 525676, 2131557, 8635656, 35017970, 141968455, 575692056, 2334344849, 9465939422, 38384559168, 155652202456, 631178976378, 2559476952229, 10378857744374, 42087027204278, 170665938023137, 692062856184512
Offset: 0
a(2) is 5 because of:
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | |
+-+-+ +-+-+ + + + + +-+-+
| | | | | | | | | | |
+-+-+ + + +-+-+ +-+-+ + +
| | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ + + + + +-+-+ +-+-+
| | | | | | | | | | | | |
+-+-+ +-+-+ +-+-+ +-+-+ +-+-+
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A220708
T(n,k)=Number of ways to reciprocally link elements of an nXk array either to themselves or to exactly two horizontal and antidiagonal neighbors, without consecutive collinear links.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 5, 1, 1, 1, 8, 12, 13, 8, 1, 1, 1, 13, 24, 37, 28, 13, 1, 1, 1, 21, 48, 105, 107, 60, 21, 1, 1, 1, 34, 96, 298, 405, 317, 129, 34, 1, 1, 1, 55, 192, 846, 1520, 1617, 932, 277, 55, 1, 1, 1, 89, 384, 2404, 5706, 8338, 6412, 2749, 595
Offset: 1
Some solutions for n=3 k=4 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
.00.67.47.00...00.00.00.00...00.00.67.47...00.00.00.00...00.67.47.00
.36.34.00.00...00.00.00.00...00.36.34.00...00.00.67.47...36.34.67.47
.00.00.00.00...00.00.00.00...00.00.00.00...00.36.34.00...00.36.34.00
A221937
T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.
Original entry on oeis.org
1, 3, 1, 6, 17, 1, 13, 105, 91, 1, 28, 783, 1599, 489, 1, 60, 5622, 36467, 24535, 2627, 1, 129, 40608, 799632, 1759041, 376389, 14113, 1, 277, 293084, 17595404, 119035112, 84547866, 5773962, 75819, 1, 595, 2115379, 387146025, 8118923949, 17626884659
Offset: 1
Some solutions for n=3 k=4
..1..1..1..1....0..3..0..1....0..2..3..0....1..1..2..1....1..2..0..1
..1..1..3..1....1..1..2..1....1..0..0..2....1..0..2..0....0..1..2..1
..0..0..2..0....1..0..2..0....0..2..2..0....1..2..0..1....2..0..0..2
A226444
Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and L-tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 42, 28, 13, 1, 1, 1, 1, 21, 60, 126, 126, 60, 21, 1, 1, 1, 1, 34, 129, 387, 524, 387, 129, 34, 1, 1, 1, 1, 55, 277, 1180, 2229, 2229, 1180, 277, 55, 1, 1
Offset: 0
A(3,3) = 6:
._____. ._____. ._____. ._____. ._____. ._____.
|_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_|
|_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___|
|_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_|.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
1, 1, 3, 6, 13, 28, 60, 129, 277, ...
1, 1, 5, 13, 42, 126, 387, 1180, 3606, ...
1, 1, 8, 28, 126, 524, 2229, 9425, 39905, ...
1, 1, 13, 60, 387, 2229, 13322, 78661, 466288, ...
1, 1, 21, 129, 1180, 9425, 78661, 647252, 5350080, ...
1, 1, 34, 277, 3606, 39905, 466288, 5350080, 61758332, ...
Columns (or rows) k=0+1,2-10 give:
A000012,
A000045(n+1),
A002478,
A105262,
A219737(n-1) for n>2,
A219738 (n-1) for n>2,
A219739(n-1) for n>1,
A219740(n-1) for n>2,
A226543,
A226544.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
`if`(k b(max(n, k), [0$min(n, k)]):
seq(seq(A(n, d-n), n=0..d), d=0..14);
[Zeilberger gives Maple code to find generating functions for the columns - see links in A228285. - N. J. A. Sloane, Aug 22 2013]
-
b[n_, l_] := b[n, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]], 0] ] ]; a[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A359022
Number of inequivalent tilings of a 6 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 9, 21, 115, 521, 1494, 15129, 83609, 459957, 2551794, 14150081, 78597739
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
A359023
Number of inequivalent tilings of a 7 X n rectangle using integer-sided square tiles.
Original entry on oeis.org
1, 1, 12, 39, 295, 1985, 15129, 56978, 861159, 6542578, 49828415
Offset: 0
Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10:
Comments