cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A114932 Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges).

Original entry on oeis.org

0, 0, 1, 25, 267, 2265, 17471, 128765, 927067, 6591505, 46545591, 327428805, 2298406067, 16114352345, 112902172111, 790721005645, 5536667136267, 38763140938785, 271367842141031, 1899678231827285, 13298160713181667
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Jan 08 2006

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ G. C. Greubel, Oct 07 2017

Formula

E.g.f.: (1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2).

A227322 Triangle read by rows: T(n, m) for 0 <= m <= n is the number of bipartite connected labeled graphs with parts of size n and m.

Original entry on oeis.org

1, 1, 1, 0, 1, 5, 0, 1, 19, 205, 0, 1, 65, 1795, 36317, 0, 1, 211, 14221, 636331, 23679901, 0, 1, 665, 106819, 10365005, 805351531, 56294206205, 0, 1, 2059, 778765, 162470155, 26175881341, 3735873535339, 502757743028605
Offset: 0

Views

Author

Pavel Irzhavski, Jul 06 2013

Keywords

Examples

			Triangle T(n, m) begins:
n\m 0 1    2      3         4           5             6               7
0   1
1   1 1
2   0 1    5
3   0 1   19    205
4   0 1   65   1795     36317
5   0 1  211  14221    636331    23679901
6   0 1  665 106819  10365005   805351531   56294206205
7   0 1 2059 778765 162470155 26175881341 3735873535339 502757743028605
...
Consider labeled bipartite graph with parts of size 2 and 2. To make graph connected it is possible to use all four possible edges or omit any one of them. Thus T(2, 2) = 5.
		

Crossrefs

Main diagonal gives: A005333.
Columns m=2, 3, 4 give: A001047, A002501, A002502.

Formula

T(n, m) = 2^(n*m) - sum for all (i, j) in ({1, 2, ..., n} X {1, 2, ..., m} UNION (1, 0)) \ (n, m) \ (1 - n, 0) of T(i, j)*C(n - 1, i - 1)*C(m, j)*2^((n - i)*(m - j)), where C(n, m) is the binomial coefficient (A007318). This relation can be obtained considering connected component which contains the first vertex of the largest part. (If the largest part has zero size we get T(0, 0) = 2^0 - 0 = 1 which is true.)

A092794 Number of connected relations.

Original entry on oeis.org

1, 21, 265, 2733, 25441, 223461, 1895545, 15736413, 128882641, 1046542101, 8451838825, 68020609293, 546227922241, 4380272835141, 35094966838105, 281025802973373, 2249545355064241, 18003091856638581, 144058517372685385, 1152637601335180653
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x*(4*x + 1)/((4*x - 1)*(5*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 05 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(4*x+1)/((1-4*x)*(1-5*x)*(1-8*x))) \\ G. C. Greubel, Oct 05 2017

Formula

a(n) = 8^n - 3*5^n + 2*4^n.
From Colin Barker, Jul 13 2013: (Start)
a(n) = 17*a(n-1) - 92*a(n-2) + 160*a(n-3).
G.f.: x*(4*x+1) / ((1-4*x)*(1-5*x)*(1-8*x)). (End)

Extensions

Additional term from Colin Barker, Jul 13 2013

A092795 Number of connected relations.

Original entry on oeis.org

1, 67, 1993, 43891, 836521, 14764627, 249723433, 4123297651, 67157947561, 1085384064787, 17464790421673, 280328391247411, 4493290901135401, 71964955947764947, 1152089156508284713, 18439265231953981171, 295080697103288816041, 4721762414918959913107
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
    LinearRecurrence[{43,-701,5477,-20658,30240},{1,67,1993,43891,836521},20] (* Harvey P. Dale, May 24 2025 *)
  • PARI
    for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n.
G.f.: x*(318*x^3+187*x^2-24*x-1) / ((5*x-1)*(6*x-1)*(7*x-1)*(9*x-1)*(16*x-1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013

A092796 Number of connected relations.

Original entry on oeis.org

1, 213, 14857, 694485, 27005881, 957263493, 32333393737, 1064686990965, 34589700409561, 1115777278022373, 35856732186282217, 1149998292486777045, 36843831022923582841, 1179748027215029366853, 37764598757179830172297, 1208682260675932309564725
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n.
G.f.: -x*(132960*x^5 + 145292*x^4 - 17528*x^3 - 1227*x^2 + 122*x + 1) / ((6*x-1)*(7*x-1)*(8*x-1)*(10*x-1)*(11*x-1)*(17*x-1)*(32*x-1)). - Colin Barker, Jul 13 2013

Extensions

Additional term from Colin Barker, Jul 13 2013

A092797 Number of connected relations.

Original entry on oeis.org

1, 667, 108817, 10796275, 858251401, 61283936827, 4147211888737, 273109341611395, 17736960725057401, 1143745441025278987, 73483870162431314257, 4712360023676936085715, 301901195708380781658601, 19331914197940256185117147, 1237580377249840094294765377
Offset: 1

Views

Author

Goran Kilibarda, Vladeta Jovovic, Apr 15 2004

Keywords

Crossrefs

Programs

  • Magma
    [64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
  • Mathematica
    Table[64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n  + 30*10^n - 270*9^n + 360*8^n - 120*7^n, ", ")) \\ G. C. Greubel, Oct 08 2017
    

Formula

a(n) = 64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n.
G.f.: x*(54888451200*x^9 +55706052240*x^8 -14450714964*x^7 -624924*x^6 +247511131*x^5 -22659769*x^4 +564934*x^3 +10694*x^2 -461*x -1) / ((7*x -1)*(8*x -1)*(9*x -1)*(10*x -1)*(11*x -1)*(12*x -1)*(15*x -1)*(18*x -1)*(19*x -1)*(33*x -1)*(64*x -1)). - Colin Barker, Jul 13 2013

Extensions

More terms from Colin Barker, Jul 13 2013
Previous Showing 11-16 of 16 results.