A114932
Number of connected (3,n)-hypergraphs (without empty edges and without multiple edges).
Original entry on oeis.org
0, 0, 1, 25, 267, 2265, 17471, 128765, 927067, 6591505, 46545591, 327428805, 2298406067, 16114352345, 112902172111, 790721005645, 5536667136267, 38763140938785, 271367842141031, 1899678231827285, 13298160713181667
Offset: 0
-
With[{nmax = 50}, CoefficientList[Series[(1/3!)*(Exp[7*x] - 3*Exp[4*x] - Exp[3*x] + 3*Exp[2*x] + 2*Exp[x] - 2), {x, 0, nmax}], x] Range[0, nmax]!] (* G. C. Greubel, Oct 07 2017 *)
-
x='x+O('x^50); concat([0,0], Vec(serlaplace((1/3!)*(exp(7*x)-3*exp(4*x)-exp(3*x)+3*exp(2*x)+2*exp(x)-2)))) \\ G. C. Greubel, Oct 07 2017
A227322
Triangle read by rows: T(n, m) for 0 <= m <= n is the number of bipartite connected labeled graphs with parts of size n and m.
Original entry on oeis.org
1, 1, 1, 0, 1, 5, 0, 1, 19, 205, 0, 1, 65, 1795, 36317, 0, 1, 211, 14221, 636331, 23679901, 0, 1, 665, 106819, 10365005, 805351531, 56294206205, 0, 1, 2059, 778765, 162470155, 26175881341, 3735873535339, 502757743028605
Offset: 0
Triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7
0 1
1 1 1
2 0 1 5
3 0 1 19 205
4 0 1 65 1795 36317
5 0 1 211 14221 636331 23679901
6 0 1 665 106819 10365005 805351531 56294206205
7 0 1 2059 778765 162470155 26175881341 3735873535339 502757743028605
...
Consider labeled bipartite graph with parts of size 2 and 2. To make graph connected it is possible to use all four possible edges or omit any one of them. Thus T(2, 2) = 5.
A092794
Number of connected relations.
Original entry on oeis.org
1, 21, 265, 2733, 25441, 223461, 1895545, 15736413, 128882641, 1046542101, 8451838825, 68020609293, 546227922241, 4380272835141, 35094966838105, 281025802973373, 2249545355064241, 18003091856638581, 144058517372685385, 1152637601335180653
Offset: 1
-
CoefficientList[Series[-x*(4*x + 1)/((4*x - 1)*(5*x - 1)*(8*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 05 2017 *)
-
x='x+O('x^50); Vec(x*(4*x+1)/((1-4*x)*(1-5*x)*(1-8*x))) \\ G. C. Greubel, Oct 05 2017
A092795
Number of connected relations.
Original entry on oeis.org
1, 67, 1993, 43891, 836521, 14764627, 249723433, 4123297651, 67157947561, 1085384064787, 17464790421673, 280328391247411, 4493290901135401, 71964955947764947, 1152089156508284713, 18439265231953981171, 295080697103288816041, 4721762414918959913107
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..825
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (43,-701,5477,-20658,30240).
-
[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n: n in [1..50]]; // G. C. Greubel, Oct 08 2017
-
Table[16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, {n, 1, 50}] (* G. C. Greubel, Oct 08 2017 *)
LinearRecurrence[{43,-701,5477,-20658,30240},{1,67,1993,43891,836521},20] (* Harvey P. Dale, May 24 2025 *)
-
for(n=1,50, print1(16^n - 4*9^n - 3*7^n + 12*6^n - 6*5^n, ", ")) \\ G. C. Greubel, Oct 08 2017
A092796
Number of connected relations.
Original entry on oeis.org
1, 213, 14857, 694485, 27005881, 957263493, 32333393737, 1064686990965, 34589700409561, 1115777278022373, 35856732186282217, 1149998292486777045, 36843831022923582841, 1179748027215029366853, 37764598757179830172297, 1208682260675932309564725
Offset: 1
- G. C. Greubel, Table of n, a(n) for n = 1..660
- G. Kilibarda and V. Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (91,-3299,62713,-682172,4276972,-14386144,20106240).
-
[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1(32^n - 5*17^n - 10*11^n + 20*10^n + 30*8^n - 60*7^n + 24*6^n, ", ")) \\ G. C. Greubel, Oct 08 2017
A092797
Number of connected relations.
Original entry on oeis.org
1, 667, 108817, 10796275, 858251401, 61283936827, 4147211888737, 273109341611395, 17736960725057401, 1143745441025278987, 73483870162431314257, 4712360023676936085715, 301901195708380781658601, 19331914197940256185117147, 1237580377249840094294765377
Offset: 1
-
[64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n: n in [0..50]]; // G. C. Greubel, Oct 08 2017
-
Table[64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n, {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
-
for(n=0,50, print1(64^n - 6*33^n - 15*19^n + 30*18^n - 10*15^n + 120*12^n - 120*11^n + 30*10^n - 270*9^n + 360*8^n - 120*7^n, ", ")) \\ G. C. Greubel, Oct 08 2017