cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 88 results. Next

A224815 Number of subsets of {1,2,...,n-8} without differences equal to 4 or 8.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 24, 36, 54, 81, 108, 144, 192, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 9477, 13689, 19773, 28561, 41743, 61009, 89167, 130321, 192052, 283024, 417088, 614656, 900032, 1317904, 1929788, 2825761
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=4, r=8, I={-4,0,8}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 + x^4 - x^5 - x^6 - 3*x^7 + 3*x^8 - 2*x^9 - x^10 - 5*x^11 - 3*x^12 - 2*x^13 + 3*x^15 - 3*x^16 - 3*x^18 + 3*x^19 - 3*x^20 + 3*x^21 + 3*x^23 + 6*x^24 - 3*x^25 - 2*x^26 - 4*x^27 - x^29 - x^30 - 2*x^31 - x^32 + x^33 + x^35 - x^36 + x^37 + x^39)/((1 - x - x^3)*(1 + x^4 + x^6)*(1 + x^4 - x^6)*(1 - x^4 - x^12)*(1 + x^4 + 6*x^8 - 3*x^12 + 2*x^20 + x^24)), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)

Formula

a(n) = a(n-1)+a(n-3)-2*a(n-4)+2*a(n-5)+2*a(n-7)-6*a(n-8)+6*a(n-9)+6*a(n-11) +a(n-12)-a(n-13)-a(n-15)+13*a(n-16)-13*a(n-17)-13*a(n-19)+15*a(n-20)-15*a(n-21)-15*a(n-23)-6*a(n-24)+6*a(n-25)+6*a(n-27)+3*a(n-28)-3*a(n-29)-3*a(n-31)-2*a(n-32)+2*a(n-33)+2*a(n-35)+8*a(n-36)-8*a(n-37)-8*a(n-39)+3*a(n-40)-3*a(n-41)-3*a(n-43)-a(n-44)+a(n-45)+a(n-47)-a(n-48)+a(n-49)+a(n-51).
G.f.: ( 1-x^3+x^4-x^5-x^6-3*x^7+3*x^8-2*x^9-x^10-5*x^11-3*x^12-2*x^13 +3*x^15-3*x^16-3*x^18+3*x^19-3*x^20+3*x^21+3*x^23+6*x^24-3*x^25-2*x^26-4*x^27-x^29-x^30-2*x^31-x^32+x^33+x^35-x^36+x^37+x^39 ) / ((1-x-x^3)*(1+x^4+x^6)*(1+x^4-x^6)*(1-x^4-x^12)*(1+x^4+6*x^8-3*x^12+2*x^20+x^24)).
a(4*k) = (A000930(k))^4,
a(4*k+1) = (A000930(k))^3 * A000930(k+1),
a(4*k+2) = (A000930(k))^2 * (A000930(k+1))^2,
a(4*k+3) = A000930(k) * (A000930(k+1))^3.

A079957 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,3}.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 2, 0, 2, 3, 1, 5, 5, 3, 10, 9, 9, 20, 17, 22, 39, 35, 51, 76, 74, 112, 150, 160, 239, 300, 346, 501, 610, 745, 1040, 1256, 1592, 2151, 2611, 3377, 4447, 5459, 7120, 9209, 11447, 14944, 19115, 24026, 31273, 39771, 50417, 65332, 82912, 105716
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {3,5,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

a(n) = a(n-3)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^3-1).

A079972 Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={1,2}.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 6, 8, 11, 17, 27, 41, 60, 88, 132, 200, 301, 449, 669, 1001, 1502, 2252, 3370, 5040, 7543, 11297, 16919, 25329, 37912, 56752, 84968, 127216, 190457, 285121, 426841, 639025, 956698, 1432276, 2144238, 3210104, 4805827, 7194801
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,4,5}.
a(n+3) is the number of length-n binary words with no substring 1x1 of 1xy1 (that is, no 1's occur with distance two or three), see fxtbook link. - Joerg Arndt, May 27 2011

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1 - x - x^4 - x^5), {x, 0, 41}], x] (* Michael De Vlieger, Feb 03 2020 *)
  • Maxima
    a(n):=sum(sum(binomial(k,j)*binomial(j,n-k-3*j),j,floor((n-k)/4),floor((n-k)/3)),k,0,n); /* Vladimir Kruchinin, May 26 2011 */

Formula

a(n) = a(n-1) + a(n-4) + a(n-5).
G.f.: 1/(1-x-x^4-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((n-k)/4)..floor((n-k)/3)} binomial(k,j)*binomial(j,n-k-3*j). - Vladimir Kruchinin, May 26 2011

A079973 Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=1, r=4, I={0,3}.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 2, 5, 6, 8, 14, 16, 27, 36, 51, 77, 103, 155, 216, 309, 448, 628, 912, 1292, 1849, 2652, 3769, 5413, 7713, 11031, 15778, 22513, 32222, 46004, 65766, 94004, 134283, 191992, 274291, 392041, 560287, 800615, 1144320, 1635193, 2336976
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {2,3,5}.
For n>=2, a(n) is number of compositions of n-2 with elements from the set {1,2,3} such that no two odd numbers appear consecutively. - Armend Shabani, Mar 01 2017

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-1/(x^5 + x^3 + x^2 - 1), {x, 0, 44}], x] (* Michael De Vlieger, Mar 02 2017 *)

Formula

a(n) = a(n-2) + a(n-3) + a(n-5).
G.f.: -1/(x^5 + x^3 + x^2 - 1).

A154659 Number of permutations of length n within distance 10.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 402796800, 3770686080, 33187593600, 278598101040, 2261952938160, 17986137205800, 141564484858104, 1112444773251726, 8787513806478134, 70146437009397871, 568128719132038153, 4647312969412825372
Offset: 0

Views

Author

Torleiv Kløve, Jan 13 2009

Keywords

Crossrefs

Extensions

More terms from Alois P. Heinz, Jan 13 2014

A224810 Subsets of {1,2,...,n-6} without differences equal to 3 or 6.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 96, 144, 216, 324, 486, 729, 1053, 1521, 2197, 3211, 4693, 6859, 10108, 14896, 21952, 32144, 47068, 68921, 100860, 147600, 216000, 316800, 464640, 681472, 998976
Offset: 0

Views

Author

Vladimir Baltic, May 16 2013

Keywords

Comments

Number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i not in the set I, i=1..n, with k=3, r=6, I={-2,-1,1,2,3,4,5}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 + x^3 - x^4 - x^5 + x^6 - 2*x^7 - x^8 - x^9 - 2*x^10 - x^12 - x^13 - x^15)/((1 - x)*(1 + x + x^2)*(1 - x - x^3)*(1 + 3*x^3 + 7*x^6 + 9*x^9 + 7*x^12 + 3*x^15 + x^18))) \\ G. C. Greubel, Apr 30 2017

Formula

a(3*k) = (A000930(k))^3.
a(3*k+1) = (A000930(k))^2 * A000930(k+1).
a(3*k+2) = A000930(k) * (A000930(k+1))^2.
a(n) = a(n-1) -a(n-3) +2*a(n-4) -2*a(n-6) +4*a(n-7) +2*a(n-9) +2*a(n-10) +4*a(n-12) -2*a(n-13) +2*a(n-15) -4*a(n-16) -2*a(n-18) -2*a(n-19) -a(n-21) -a(n-22) -a(n-24)
G.f.: (1+x^3-x^4-x^5+x^6-2*x^7-x^8-x^9-2*x^10-x^12-x^13-x^15) / ((1-x)*(1+x+x^2)*(1-x-x^3)*(1+3*x^3+7*x^6+9*x^9+7*x^12+3*x^15+x^18))

A376743 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,-1,4} for all i=1,...,n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8, 11, 15, 25, 35, 46, 61, 85, 125, 175, 245, 341, 470, 650, 925, 1300, 1810, 2521, 3520, 4915, 6880, 9640, 13476, 18801, 26251, 36721, 51346, 71776, 100335, 140210, 195886, 273813, 382821, 535105, 747850, 1045220
Offset: 0

Views

Author

Michael A. Allen, Oct 03 2024

Keywords

Comments

Other sequences related to strongly restricted permutations pi(i) of i in {1,..,n} along with the sets of allowed p(i)-i (containing at least 3 elements): A000045 {-1,0,1}, A189593 {-1,0,2,3,4,5,6}, A189600 {-1,0,2,3,4,5,6,7}, A006498 {-2,0,2}, A080013 {-2,1,2}, A080014 {-2,0,1,2}, A033305 {-2,-1,1,2}, A002524 {-2,-1,0,1,2}, A080000 {-2,0,3}, A080001 {-2,1,3}, A080004 {-2,0,1,3}, A080002 {-2,2,3}, A080005 {-2,0,2,3}, A080008 {-2,1,2,3}, A080011 {-2,0,1,2,3}, A079999 {-2,-1,3}, A080003 {-2,-1,0,3}, A080006 {-2,-1,1,3}, A080009 {-2,-1,0,1,3}, A080007 {-2,-1,2,3}, A080010 {-2,-1,0,2,3}, A080012 {-2,-1,1,2,3}, A072827 {-2,-1,0,1,2,3}, A224809 {-2,0,4}, A189585 {-2,0,1,3,4}, A189581 {-2,-1,0,3,4}, A072850 {-2,-1,0,1,2,3,4}, A189587 {-2,0,1,3,4,5}, A189588 {-2,-1,0,3,4,5}, A189594 {-2,0,1,3,4,5,6}, A189595 {-2,-1,0,3,4,5,6}, A189601 {-2,0,1,3,4,5,6,7}, A189602 {-2,-1,0,3,4,5,6,7}, A224811 {-2,0,8}, A224812 {-2,0,10}, A224813 {-2,0,12}, A006500 {-3,0,3}, A079981 {-3,1,3}, A079983 {-3,0,1,3}, A079982 {-3,2,3}, A079984 {-3,0,2,3}, A079988 {-3,1,2,3}, A079989 {-3,0,1,2,3}, A079986 {-3,-1,1,3}, A079992 {-3,-1,0,1,3}, A079987 {-3,-1,2,3}, A079990 {-3,-1,0,2,3}, A079993 {-3,-1,1,2,3}, A079985 {-3,-2,2,3}, A079991 {-3,-2,0,2,3}, A079996 {-3,-2,0,1,2,3}, A079994 {-3,-2,1,2,3}, A079997 {-3,-2, -1,1,2,3}, A002526 {-3,-2,-1,0,1,2,3}, A189586 {-3,0,1,2,4}, A189583 {-3,-1,0,2,4}, A189582 {-3,-2,0,1,4}, A189584 {-3,-2,-1,0,4}, A189589 {-3,0,1,2,4,5}, A189590 {-3,-1,0,2,4,5}, A189591 {-3,-2,1,4,5}, A189592 {-3,-2,-1,0,4,5}, A224810 {-3,0,6}, A189596 {-3,0,1,2,4,5,6}, A189597 {-3,-1,0,2,4,5,6}, A189598 {-3,-2,0,1,4,5,6}, A189599 {-3,-2,-1,0,4,5,6}, A224814 {-3,0,9}, A031923 {-4,0,4}, A072856 {-4,-3, -2,-1,0,1,2,3,4}, A224815 {-4,0,8}, A154654 {-5,-4,-3,-2,-1,0,1,2,3,4,5}, A154655 {-6,-5,-4,-3, -2,-1,0,1,2,3,4,5,6}.
[Keyword "less", because this comment should be moved to the Index to the OEIS, it is not appropriate here. - N. J. A. Sloane, Oct 25 2024]

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

See comments for other sequences related to strongly restricted permutations.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15),{x,0,49}],x]
    LinearRecurrence[{0, 0, 1, 1, 1, 2, 1, 0, -2, -2, 0, -1, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8}, 50]

Formula

a(n) = a(n-3) + a(n-4) + a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) + a(n-15).
G.f.: (1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15).

A079958 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={3,4}.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 25, 46, 86, 161, 300, 560, 1046, 1952, 3644, 6803, 12699, 23706, 44254, 82611, 154215, 287883, 537408, 1003212, 1872757, 3495988, 6526172, 12182800, 22742368, 42454552, 79252477, 147945385, 276178586, 515559248
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,2,3,6}.
Number of compositions of n with 3 frozen; that is, the order of the summand 3 does not matter. - Gregory L. Simay, Oct 01 2018

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,0,0,1},{1,1,2,4,7,13},40] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-x-x^2-x^3-x^6)) \\ Altug Alkan, Oct 02 2018

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-6).
G.f.: -1/(x^6+x^3+x^2+x-1)

A079971 Number of compositions (ordered partitions) of n into parts 1, 2, and 5.

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 128, 218, 372, 634, 1081, 1843, 3142, 5357, 9133, 15571, 26547, 45260, 77164, 131557, 224292, 382396, 651948, 1111508, 1895013, 3230813, 5508222, 9390983, 16010713, 27296709, 46538235, 79343166, 135272384
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of ways of ordered sequences of nickels, dimes and quarters that add to 5n cents.
Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2,3}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(5, (i,j)-> if i+1=j or j=1 and member(i,[1, 2, 5]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Oct 07 2008
  • Mathematica
    LinearRecurrence[{1, 1, 0, 0, 1}, {1, 1, 2, 3, 5}, 40] (* Jean-François Alcover, Nov 11 2015 *)
  • Maxima
    a(n):=sum(sum(binomial(j,n-5*k+4*j)*binomial(k,j),j,floor((5*k-n)/4),k),k,0,n); /* Vladimir Kruchinin, Dec 15 2011 */

Formula

Recurrence: a(n) = a(n-1)+a(n-2)+a(n-5).
G.f.: 1/(1-x-x^2-x^5).
a(n) = Sum_{k=0..n} Sum_{j=floor((5*k-n)/4)..k} C(j,n-5*k+4*j)*C(k,j). - Vladimir Kruchinin, Dec 15 2011
With offset 1, the INVERT transform of (1 + x + x^4). - Gary W. Adamson, Apr 01 2017

Extensions

Entry revised by N. J. A. Sloane, Feb 23 2006

A080000 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={-1,1,2}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 7, 9, 12, 16, 24, 35, 50, 70, 96, 135, 190, 270, 383, 539, 759, 1065, 1500, 2116, 2985, 4212, 5932, 8356, 11770, 16585, 23381, 32953, 46445, 65445, 92216, 129951, 183129, 258091, 363719, 512566, 722316, 1017886, 1434445, 2021476
Offset: 0

Views

Author

Vladimir Baltic, Feb 10 2003

Keywords

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
a(5) = 2 for permutations [1,2,3,4,5] and [4,5,1,2,3].
		

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

G.f.: -(x^5-1)/(x^10-x^7+x^6-2*x^5-x+1).
a(n) = a(n-1)+2*a(n-5)-a(n-6)+a(n-7)-a(n-10).
Previous Showing 31-40 of 88 results. Next