cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 78 results. Next

A080000 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=2, r=3, I={-1,1,2}.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 7, 9, 12, 16, 24, 35, 50, 70, 96, 135, 190, 270, 383, 539, 759, 1065, 1500, 2116, 2985, 4212, 5932, 8356, 11770, 16585, 23381, 32953, 46445, 65445, 92216, 129951, 183129, 258091, 363719, 512566, 722316, 1017886, 1434445, 2021476
Offset: 0

Views

Author

Vladimir Baltic, Feb 10 2003

Keywords

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 5*x^7 + 7*x^8 + 9*x^9 + ...
a(5) = 2 for permutations [1,2,3,4,5] and [4,5,1,2,3].
		

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

G.f.: -(x^5-1)/(x^10-x^7+x^6-2*x^5-x+1).
a(n) = a(n-1)+2*a(n-5)-a(n-6)+a(n-7)-a(n-10).

A224814 Number of subsets of {1,2,...,n-9} without differences equal to 3, 6 or 9.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 12, 18, 27, 36, 48, 64, 80, 100, 125, 175, 245, 343, 490, 700, 1000, 1400, 1960, 2744, 3724, 5054, 6859, 9386, 12844, 17576, 24336, 33696, 46656, 64800, 90000, 125000, 172500, 238050, 328509, 452295, 622725, 857375, 1182275, 1630295, 2248091, 3106141, 4291691, 5929741, 8190250, 11312500, 15625000, 21562500
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=3, r=9, I={-3,0,9}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^4 - x^5 - x^7 - x^8 + 2*x^9 - x^10 - 3*x^12 - x^13 - 2*x^15 + 3*x^16 + 3*x^17 + 2*x^18 - x^20 - 4*x^21 + x^23 + 3*x^24 + 3*x^25 + x^27 - 4*x^28 - x^29 - 2*x^30 + x^31 + 2*x^33 +x^34 - x^36 - x^37 + x^40)/((1 - x - x^4)*(1 - x^9 - x^12)*(1 + x^6 + 4*x^9 - 4*x^12 - 2*x^15 + 4*x^18 - 3*x^21 - 3*x^24 + 7*x^27 - 6*x^30 + 3*x^33 - x^36)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec((1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-4) -a(n-6) +a(n-7) -3*a(n-9) +4*a(n-10) +5*a(n-12) -2*a(n-13) +3*a(n-15) -8*a(n-16) +a(n-18) -4*a(n-19) +3*a(n-21) -4*a(n-22) -3*a(n-24) -5*a(n-27) +8*a(n-28) +7*a(n-30) -2*a(n-31) -9*a(n-33) +2*a(n-34) +5*a(n-36) +4*a(n-37) +a(n-39) -6*a(n-40) -3*a(n-42) +2*a(n-43) +2*a(n-45) +a(n-46) -a(n-48) -a(n-49) +a(n-52).
G.f.: (1 -x^4 -x^5 -x^7 -x^8 +2*x^9 -x^10 -3*x^12 -x^13 -2*x^15 +3*x^16 +3*x^17 +2*x^18 -x^20 -4*x^21 +x^23 +3*x^24 +3*x^25 +x^27 -4*x^28 -x^29 -2*x^30 +x^31 +2*x^33 +x^34 -x^36 -x^37 +x^40 )/((1-x-x^4)*(1-x^9-x^12)*(1 +x^6 +4*x^9 -4*x^12 -2*x^15 +4*x^18 -3*x^21 -3*x^24 +7*x^27 -6*x^30 +3*x^33 -x^36)).
a(3*k) = (A003269(k))^3,
a(3*k+1) = (A003269(k))^2 * A003269(k+1),
a(3*k+2) = A003269(k) * (A003269(k+1))^2.

A079816 Number of permutations satisfying -k <= p(i)-i <= r and p(i)-i not in I, i=1..n, with k=1, r=5, I={1}.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 12, 20, 34, 59, 102, 175, 300, 515, 885, 1521, 2613, 4488, 7709, 13243, 22750, 39081, 67134, 115324, 198107, 340315, 584604, 1004250, 1725130, 2963480, 5090756, 8745055, 15022519, 25806135, 44330556, 76152366, 130816831
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,3,4,5,6}.
a(n+1) is the number of multus bitstrings of length n with no runs of 6 ones. - Steven Finch, Mar 25 2020

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x-x^3-x^4-x^5-x^6) )); // G. C. Greubel, Dec 12 2023
    
  • Mathematica
    LinearRecurrence[{1,0,1,1,1,1}, {1,1,1,2,4,7}, 51] (* G. C. Greubel, Dec 12 2023 *)
  • SageMath
    def A079816_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-x-x^3-x^4-x^5-x^6) ).list()
    A079816_list(50) # G. C. Greubel, Dec 12 2023

Formula

Recurrence: a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-6).
G.f.: 1/(1-x-x^3-x^4-x^5-x^6).

A079956 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={0,1,4}.

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 2, 2, 1, 3, 5, 3, 6, 10, 9, 12, 21, 22, 27, 43, 52, 61, 91, 117, 140, 195, 260, 318, 426, 572, 718, 939, 1258, 1608, 2083, 2769, 3584, 4630, 6110, 7961, 10297, 13509, 17655, 22888, 29916, 39125, 50840, 66313, 86696, 112853, 147069, 192134
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {3,4,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,1,1,0,1},{1,0,0,1,1,0},60] (* Harvey P. Dale, Oct 05 2016 *)

Formula

a(n) = a(n-3)+a(n-4)+a(n-6).
G.f.: -1/(x^6+x^4+x^3-1).

A079976 Expansion of g.f. 1/(1-x-x^2-x^4-x^5).

Original entry on oeis.org

1, 1, 2, 3, 6, 11, 20, 36, 65, 118, 214, 388, 703, 1274, 2309, 4185, 7585, 13747, 24915, 45156, 81841, 148329, 268832, 487232, 883061, 1600463, 2900685, 5257212, 9528190, 17268926, 31298264, 56725087, 102808753, 186330956, 337706899
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Number of compositions of n into elements of the set {1,2,4,5}.
Number of permutations (p(1),...,p(n)) of (1..n) satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=4, I={2}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^2-x^4-x^5),{x,0,40}],x] (* or *) LinearRecurrence[ {1,1,0,1,1},{1,1,2,3,6},40] (* Harvey P. Dale, Mar 16 2023 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-4)+a(n-5).

Extensions

Since this sequence arises in several different contexts, I made the definition as simple as possible. - N. J. A. Sloane, Apr 17 2011

A079981 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,0,1,2}.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 3, 0, 8, 0, 12, 0, 27, 0, 52, 0, 95, 0, 196, 0, 369, 0, 720, 0, 1408, 0, 2709, 0, 5292, 0, 10249, 0, 19894, 0, 38675, 0, 74992, 0, 145692, 0, 282823, 0, 549000, 0, 1066095, 0, 2069496, 0, 4018065, 0, 7801024, 0, 15144960, 0, 29404281, 0
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Also, number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=3, r=3, I={-2,-1,0,2}. a(n)=A079980(k) if n=2k, a(n)=0 otherwise.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Bisection gives A079980 (even part).

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,1,0,4,0,2,0,2,0,-2,0,1,0,0,0,1},{1,0,0,0,1,0,2,0,3,0,8,0,12,0,27,0,52,0},80] (* Harvey P. Dale, Aug 18 2012 *)

Formula

Recurrence: a(n) = a(n-4)+4*a(n-6)+2*a(n-8)+2*a(n-10)-2*a(n-12)+a(n-14)+a(n-18).
G.f.: -(x^12-2*x^6+1)/(x^18+x^14-2*x^12+2*x^10+2*x^8+4*x^6+x^4-1).

A079989 Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=3, r=3, I={1,2}.

Original entry on oeis.org

1, 1, 1, 1, 5, 13, 27, 51, 103, 221, 498, 1064, 2240, 4728, 10076, 21559, 46075, 98085, 208759, 444727, 948151, 2021335, 4307861, 9179111, 19560273, 41686260, 88842852, 189337896, 403497908, 859893060, 1832537757, 3905386173, 8322891733, 17737112293, 37799944529
Offset: 0

Views

Author

Vladimir Baltic, Feb 17 2003

Keywords

Comments

Also, number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=3, r=3, I={-2,-1}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Formula

a(n) = a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +3*a(n-5) +4*a(n-6) -7*a(n-7) -7*a(n-8) -6*a(n-9) +6*a(n-10) -2*a(n-11) -a(n-12) +a(n-13) +4*a(n-14) +a(n-15) -3*a(n-16) +a(n-18) -a(n-19) -a(n-20).
G.f.: -(x^14 -x^12 +x^11 -x^9 -x^8 +x^6 -x^5 +3*x^3 +x^2-1)/( x^20 +x^19 -x^18 +3*x^16 -x^15 -4*x^14 -x^13 +x^12 +2*x^11 -6*x^10 +6*x^9 +7*x^8 +7*x^7 -4*x^6 -3*x^5 -x^4 -2*x^3 -x^2 -x +1).

A224812 Number of subsets of {1,2,...,n-10} without differences equal to 2, 4, 6, 8 or 10.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 63, 81, 108, 144, 192, 256, 336, 441, 567, 729, 918, 1156, 1462, 1849, 2365, 3025, 3905, 5041, 6532, 8464, 10948, 14161, 18207, 23409, 29988, 38416, 49196, 63001, 80822, 103684, 133308, 171396, 220662, 284089, 365638, 470596, 605052, 777924, 999306, 1283689, 1648515
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=10, I={-2,0,10}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1)), {x, 0, 50}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(x + 1)*(x^23 - x^22 + x^21 - x^20 + x^19 - x^13 + x^12 - 3*x^11 + 3*x^10 - 3*x^9 + 2*x^8 - 2*x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)/((x^6 + x - 1)*(x^30 + x^24 - 2*x^20 - 2*x^18 - x^14 - 2*x^12 + x^10 + x^8 + x^6 + 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) +3*a(n-12) -2*a(n-13) +2*a(n-14) -a(n-15) +a(n-16) -2*a(n-19) +a(n-20) -2*a(n-21) -3*a(n-24) +a(n-25) -2*a(n-26) +a(n-31) +a(n-36).
G.f.: -(x+1) *(x^23 -x^22 +x^21 -x^20 +x^19 -x^13 +x^12 -3*x^11 +3*x^10 -3*x^9 +2*x^8 -2*x^7 +x^6 -x^5 +x^4 -x^3 +x^2 -x +1)/ ((x^6 +x -1) *(x^30 +x^24 -2*x^20 -2*x^18 -x^14 -2*x^12 +x^10 +x^8 +x^6+1) ).
a(2*k) = (A005708(k))^2, a(2*k+1) = A005708(k) * A005708(k+1).

A224813 Number of subsets of {1,2,...,n-12} without differences equal to 2, 4, 6, 8, 10 or 12.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 80, 100, 130, 169, 221, 289, 374, 484, 616, 784, 980, 1225, 1505, 1849, 2279, 2809, 3498, 4356, 5478, 6889, 8715, 11025, 13965, 17689, 22344, 28224, 35448, 44521, 55704, 69696, 87120, 108900, 136290, 170569, 213934, 268324, 337218, 423801, 533169, 670761, 843570
Offset: 0

Views

Author

Vladimir Baltic, May 18 2013

Keywords

Comments

a(n) is the number of permutations (p(1), p(2), ..., p(n)) satisfying -k <= p(i)-i <= r and p(i)-i in the set I, i=1..n, with k=2, r=12, I={-2,0,12}.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1)), {x, 0, 1000}], x] (* G. C. Greubel, Oct 28 2017 *)
  • PARI
    x='x+O('x^50); Vec(-(-1 + x^7 + x^9 + x^11 + 2*x^14 + x^16 - 2*x^21 - 2*x^23 - x^28 + x^35)/((x^7 + x - 1)*(x^42 - x^36 - 2*x^30 - 3*x^28 + 2*x^24 + 2*x^22 + x^18 + 2*x^16 + 3*x^14 - x^12 - x^10 - x^8 - 1))) \\ G. C. Greubel, Oct 28 2017

Formula

a(n) = a(n-1) +a(n-7) -a(n-8) +a(n-9) -a(n-10) +a(n-11) -a(n-12) +a(n-13) +3*a(n-14) -2*a(n-15) +2*a(n-16) -a(n-17) +a(n-18) -3*a(n-21) +2*a(n-22) -4*a(n-23) +2*a(n-24) -3*a(n-25) -3*a(n-28) +a(n-29) -2*a(n-30) +3*a(n-35) -a(n-36) +3*a(n-37) +a(n-42) -a(n-49).
G.f.: -(-1 +x^7 +x^9 +x^11 +2*x^14 +x^16 -2*x^21 -2*x^23 -x^28 +x^35)/( (x^7+x-1) *(x^42 -x^36 -2*x^30 -3*x^28 +2*x^24 +2*x^22 +x^18 +2*x^16 +3*x^14 -x^12 -x^10 -x^8 -1) ).
a(2*k) = (A005709(k))^2, a(2*k+1) = A005709(k) * A005709(k+1).

A079968 Number of permutations satisfying -k<=p(i)-i<=r and p(i)-i not in I, i=1..n, with k=1, r=5, I={3}.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 27, 51, 98, 187, 357, 683, 1305, 2494, 4767, 9110, 17411, 33276, 63596, 121544, 232293, 443954, 848478, 1621597, 3099169, 5923081, 11320094, 21634776, 41348026, 79023662, 151028714, 288643577, 551650823, 1054305916
Offset: 0

Views

Author

Vladimir Baltic, Feb 19 2003

Keywords

Comments

Number of compositions (ordered partitions) of n into elements of the set {1,2,3,5,6}.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,1,0,1,1},{1,1,2,4,7,14},40] (* Harvey P. Dale, Jun 05 2013 *)

Formula

a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-5)+a(n-6).
G.f.: -1/(x^6+x^5+x^3+x^2+x-1).
Previous Showing 31-40 of 78 results. Next