cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A253904 Denominators of approximation to 2^(1/3) by Halley's method after n iterations.

Original entry on oeis.org

1, 4, 504, 387144514512, 134785660354544802902690364367892668197456173472
Offset: 0

Views

Author

Kival Ngaokrajang, Jan 24 2015

Keywords

Comments

Numerators are given in A253690.

Examples

			Approximations to 2^(1/3):
n = 1: 5/4 = 1.25; error = -0.00992104...
n = 2: 635/504 = 1.2599206...; error = -0.00000041...
n = 3: 487771523185/387144514512 = 1.2599210...; error = -3.001136... * 10^-20.
		

Crossrefs

Programs

  • PARI
    {a=1; b=1; print1(b, ", "); for(n=1, 5, x=a*(a^3+4*b^3); y=2*b*(a^3+b^3); a=x/gcd(x, y); b=y/gcd(x, y); print1(b, ", "))}

Formula

a(n) = y(n)/gcd(x(n),y(n))
where x(n) = A253690(n-1)*(A253690(n-1)^3n + 4*a(n-1)^3)
and y(n) = 2*(A253690(n-1)^3 + a(n-1)^3);
x(0) = y(0) = 1.

A317969 Decimal expansion of (2^(1/3)-1)^(1/3).

Original entry on oeis.org

6, 3, 8, 1, 8, 5, 8, 2, 0, 8, 6, 0, 6, 4, 4, 1, 5, 3, 0, 1, 5, 5, 0, 3, 6, 5, 9, 4, 4, 4, 0, 6, 7, 7, 0, 1, 2, 6, 5, 1, 5, 7, 5, 4, 3, 9, 7, 7, 9, 9, 7, 6, 8, 3, 4, 2, 1, 0, 6, 2, 0, 8, 1, 5, 8, 0, 5, 7, 5, 4, 8, 5, 1, 3, 9, 7, 0, 7, 9, 2, 5, 0, 2, 7, 6
Offset: 0

Views

Author

N. J. A. Sloane, Aug 27 2018

Keywords

Comments

(2^(1/3)-1)^(1/3) = (1/9)^(1/3) - (2/9)^(1/3) + (4/9)^(1/3) is a famous and remarkable identity of Ramanujan's.
Ramanujan's question 1076 (ii), see Berndt and Rankin in References: Show that (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) = (4/9)^(1/3)-(2/9)^(1/3)+(1/9)^(1/3). - Hugo Pfoertner, Aug 28 2018

Examples

			0.638185820860644153015503659444067701265157543977997683421...
		

References

  • B. C. Berndt and R. A. Rankin, Ramanujan: Essays and Surveys, American Mathematical Society, 2001, ISBN 0-8218-2624-7, page 222 (JIMS 11, page 199).
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Section 1.1.2, p. 4.
  • S. Ramanujan, Coll. Papers, Chelsea, 1962, page 331, Question 682; page 334 Question 1076.

Crossrefs

Programs

  • Maple
    evalf((4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8)); # Muniru A Asiru, Aug 28 2018
  • Mathematica
    RealDigits[N[Power[Power[2, (3)^-1] - 1, (3)^-1], 100]] (* Peter Cullen Burbery, Apr 09 2022 *)
  • PARI
    (4*(2/3)^(1/3)-5*(1/3)^(1/3))^(1/8) /* Hugo Pfoertner Aug 28 2018 */
    
  • PARI
    sqrtn(1/9, 3) - sqrtn(2/9, 3) + sqrtn(4/9, 3) \\ Michel Marcus, Jan 07 2022

Formula

From Michel Marcus, Jan 08 2022: (Start)
Equals (A002580-1)^(1/3).
k^(3*n) = x(n) + A002580*y(n) + A005480*z(n) where k is this constant z(n) = A108369(n-1), y(n) = z(n)+z(n+1), x(n) = y(n)+y(n+1); A002580 and A005480 are the cube root of 2 and 4. (End)
Minimal polynomial: 1 - 3*x^3 - 3*x^6 - x^9. - Stefano Spezia, Oct 15 2024

A100082 First occurrence of n in the fractional part of the cube root of 2, starting with n=0.

Original entry on oeis.org

7, 6, 1, 15, 8, 2, 17, 14, 10, 3, 6, 61, 62, 74, 42, 48, 16, 392, 193, 57, 346, 5, 31, 461, 90, 1, 148, 28, 32, 67, 145, 15, 328, 621, 267, 34, 92, 81, 232, 75, 126, 99, 147, 91, 268, 139, 43, 18, 12, 8, 35, 41, 66, 255, 101, 65, 88, 37, 207, 2, 25, 112, 89, 266, 17, 72, 115
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 04 2004

Keywords

Examples

			The fractional part of 2^(1/3) begins 259921049894873164767210607278... so the first occurrence of 0 is at position 7; the first occurrence of 1 is at position 6; etc.
		

Crossrefs

Cf. A002580 for digits of the cube root of 2.

Programs

  • Mathematica
    Join[{7},With[{cr2=Rest[RealDigits[2^(1/3),10,1000][[1]]]},Flatten[ Table[Position[ Partition[cr2,IntegerLength[n],1],IntegerDigits[n],1,1],{n,70}]]]] (* Harvey P. Dale, Nov 28 2012 *)

A355178 Decimal expansion of 2^(-2/3)/L, where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

1, 1, 5, 9, 5, 9, 5, 2, 6, 6, 9, 6, 3, 9, 2, 8, 3, 6, 5, 7, 6, 9, 9, 9, 2, 0, 5, 1, 5, 7, 0, 0, 2, 0, 8, 8, 1, 9, 4, 5, 1, 6, 5, 2, 6, 3, 4, 3, 9, 7, 8, 2, 8, 5, 5, 2, 6, 3, 1, 0, 5, 0, 5, 9, 7, 4, 7, 9, 7, 3, 7, 5, 7, 2, 0, 5, 2, 8, 6, 2, 5, 8, 6, 5, 8, 0, 8, 5, 2, 5
Offset: 1

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			1.159595266963928365769992051570020881945...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2^(1/3)*Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]), 90]]]

Formula

Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2)).
From Gerry Martens, Jul 29 2023: (Start)
Equals hypergeom([1/3, 2/3], [1], 1/2).
Equals sqrt(Pi)/(Gamma(2/3)*Gamma(5/6)). (End)

A380898 Decimal expansion of 2^(8/3).

Original entry on oeis.org

6, 3, 4, 9, 6, 0, 4, 2, 0, 7, 8, 7, 2, 7, 9, 7, 8, 9, 9, 0, 0, 6, 8, 2, 2, 5, 5, 7, 0, 8, 9, 2, 3, 3, 0, 4, 1, 5, 6, 5, 9, 7, 3, 3, 1, 1, 5, 9, 9, 4, 1, 2, 0, 3, 9, 2, 3, 3, 1, 4, 3, 0, 4, 7, 3, 0, 0, 8, 6, 6, 0, 2, 2, 4, 9, 6, 8, 7, 6, 6, 9, 3, 0, 9, 4, 1, 7, 6, 8, 5, 3, 0, 4, 8, 8, 8, 3, 8, 2, 8
Offset: 1

Views

Author

Stefano Spezia, Feb 07 2025

Keywords

Comments

This constant is the effective degree of generic random walk on the dual (4,8,8) lattice (see Burda et al.).

Examples

			6.3496042078727978990068225570892330415659733...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2^(8/3),10,100][[1]]

Formula

Equals A010588^2 = 2*A010603. - Hugo Pfoertner, Feb 07 2025
Previous Showing 31-35 of 35 results.