cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 135 results. Next

A073397 Eighth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 18, 198, 1680, 12060, 76824, 446952, 2420352, 12363120, 60151520, 280833696, 1265442048, 5528697408, 23507763840, 97575960960, 396398370816, 1579498956288, 6184543546368, 23833455191040, 90522348871680, 339263015528448, 1255995653197824, 4597442198728704
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n), with U(n) = A002605(n), see A073387 and the row polynomials of triangles A073405 and A073406.

Crossrefs

Ninth (m=8) column of triangle A073387.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^9 )); // G. C. Greubel, Oct 06 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2*x-2*x^2)^9, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
  • SageMath
    def A073397_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-2*x^2)^9 ).list()
    A073397_list(30) # G. C. Greubel, Oct 06 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073394(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+8, 8)*binomial(n-k, k)*2^(n-k).
G.f.: 1/(1-2*x*(1+x))^9.

A073406 Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073405.

Original entry on oeis.org

2, 36, 12, 1056, 672, 96, 43968, 40416, 10752, 864, 2396160, 2815488, 1051776, 156672, 8064, 161879040, 226492416, 105981696, 22125312, 2121984, 76032, 13044326400, 20766633984, 11446769664, 2995605504
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A002605(n), n>= 0, ((2,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073387(n+k,k) = 2*(p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*U0(n))/(k!*12^k)), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A073405(k,m).

Examples

			k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
2; 36,12; 1056,672,96; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: p(k, n)= 2*((n+2)*p(k-1, n+1)+2*(n+2*(k+1))*p(k-1, n)+(n+3)*q(k-1, n+1)); q(k, n)= 4*((n+1)*p(k-1, n+1)+(n+2*(k+1))*q(k-1, n)), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]

A073398 Ninth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 20, 240, 2200, 16940, 115104, 711040, 4072640, 21930480, 112157760, 549010176, 2587777920, 11802273600, 52287866880, 225756241920, 952486588416, 3935984616960, 15961485957120, 63628396339200, 249702113464320, 965924035135488, 3687247950397440
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n), with U(n) = A002605(n), see A073387 and the row polynomials of triangles A073405 and A073406.

Crossrefs

Tenth (m=9) column of triangle A073387.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^10 )); // G. C. Greubel, Oct 06 2022
    
  • Mathematica
    CoefficientList[Series[1/(1-2*x-2*x^2)^10, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
  • SageMath
    def A073398_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-2*x^2)^10 ).list()
    A073398_list(30) # G. C. Greubel, Oct 06 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A002605(k) and c(k) = A073397(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+9, 9)*binomial(n-k, k)*2^(n-k).
G.f.: 1/(1-2*x*(1+x))^10.

A073404 Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073403.

Original entry on oeis.org

2, 12, 36, 96, 672, 1056, 864, 10752, 40416, 43968, 8064, 156672, 1051776, 2815488, 2396160, 76032, 2121984, 22125312, 105981696, 226492416, 161879040, 718848, 27205632, 404656128, 2995605504
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of U0(n) := A002605(n), n>= 0, ((2,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073387(n+k,k) = 2*(p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*U0(n))/(k!*(2^2+4*2)^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073403(k,m).

Examples

			k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 96,672,1056; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: see A073405.

A105607 Sylvester cyclotomic numbers for A002605.

Original entry on oeis.org

1, 2, 6, 8, 44, 10, 328, 56, 408, 76, 18272, 52, 136384, 568, 3856, 3104, 7598336, 424, 56714752, 2896, 215104, 31648, 3159738368, 3088, 536013824, 236224, 71910912, 161344, 1313964867584, 2320, 9807567290368, 9634304, 667730944, 13160704, 37860806656, 172864, 4078438577864704, 98232832, 37201186816, 9584896
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Comments

Primitive parts of A002605.

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[ Expand[ Times @@ ((1+Sqrt[3])-(1-Sqrt[3])*Exp[2Pi*I*Select[Range[n-1], GCD[ #, n] == 1 &]/n])]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Aug 02 2005 *)

Formula

a(n) = A002605(n)/A105606(n); a(n) = Product_{k=1..n-1, gcd(n, k)=1} (1+sqrt(3))-(1-sqrt(3))*exp(2*Pi*i*k/n), i = sqrt(-1). - Robert G. Wilson v, Aug 02 2005

Extensions

More terms from David Wasserman, May 06 2008

A105608 Sylvester dividends for A002605.

Original entry on oeis.org

1, 1, 1, 2, 1, 12, 1, 16, 6, 88, 1, 960, 1, 656, 264, 896, 1, 48960, 1, 53504, 1968, 36544, 1, 2795520, 44, 272768, 2448, 2980864, 1, 1547335680, 1, 2781184, 109632, 15196672, 14432, 8635760640, 1, 113429504, 818304, 8677064704, 1, 4808968273920, 1, 9252356096, 415337472, 6319476736, 1, 26795484119040, 328, 3584860454912
Offset: 1

Views

Author

Paul Barry, Apr 15 2005

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := FullSimplify[ Expand[ Times @@ ((1+Sqrt[3])-(1-Sqrt[3])*Exp[2Pi*I*Select[Range[n-1], GCD[ #, n] > 1 &]/n])]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Aug 02 2005 *)

Formula

a(n) = A002605(n)/A105607(n); a(n) = Product_{k=1..n-1, gcd(n, k)>1} (1+sqrt(3))-(1-sqrt(3))*exp(2*Pi*i*k/n), i = sqrt(-1).

Extensions

More terms from David Wasserman, May 06 2008

A175289 Pisano period of A002605 modulo n.

Original entry on oeis.org

1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1, 144, 9, 180, 24, 48, 10, 22, 3, 120, 12, 27, 48, 840, 24, 320, 1, 30, 144, 48, 9, 36, 180, 12, 24, 280, 48, 308, 10, 72, 22, 46, 3, 336, 120, 144, 12, 936, 27, 120, 48, 180, 840, 29, 24, 60, 320, 144, 1, 24, 30, 1122, 144
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2010

Keywords

Comments

a(79)=6240. [John W. Layman, Aug 10 2010]

Examples

			Reading 0, 1, 2, 6, 16, 44, 120, 328, 896, 2448,.. modulo 12 gives 0, 1, 2, 6, 4, 8, 0, 4, 8, 0, 4, 8 ,.. with period length a(n=12)= 3.
		

Crossrefs

Programs

  • Mathematica
    a={1};For[n=2,n<=80,n++,{x={{0,1}}; t={1,1}; While[ !MemberQ[x,t], {xl = x[[ -1]]; AppendTo[x,t]; t={Mod[2*(t[[1]]+xl[[1]]),n], Mod[2*(t[[2]] + xl[[2]]),n]};}]; p = Flatten[Position[x,t]][[1]]; AppendTo[a, Length[x] - p+1];}]; Print[a]; (* John W. Layman, Aug 10 2010 *)

Extensions

Terms beyond a(28)=48 from John W. Layman, Aug 10 2010

A127259 Sequence arising from the factorization of F(n)=A002605 and L(n)=A080040 F(0)=0, F(1)=1, F(n)=2*F(n-1)+2*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+2*L(n-2).

Original entry on oeis.org

2, 1, 10, 8, 76, 6, 568, 56, 424, 44, 31648, 52, 236224, 328, 2320, 3104, 13160704, 408, 98232832, 2896, 129088, 18272, 5472827392, 3088, 537496576, 136384, 71911936, 161344, 2275853910016, 3856, 16987204845568
Offset: 1

Views

Author

Miklos Kristof, Mar 26 2007

Keywords

Examples

			F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*10*8*6*52=49920
F(9)=a(2)*a(6)*a(18)= 1*6*408=2448
L(12)=a(8)*a(24)=56*3088=172928
L(21)=a(1)*a(3)*a(7)*a(21)=2*10*568*129088=1466439680
		

Crossrefs

Programs

  • Maple
    with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)),30)) od: seq(a[n],n=1..60);

Formula

(sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)) L(n)=2*F(n-1)+F(n+1) F(2n)=Product(d|2n) a(d), F(2n+1)=Product(d|2n+1) a(2d). L(2n+1)=Product(d|2n+1, a(d)), for k>0: L(2^k*(2n+1))=Product(d|2n+1, a(2^(k+1)*d)). for odd prime p, a(p)=L(p)/2, a(2p)=f(p) a(1)=2, a(2)=1; a(2^(k+1))=L(2^k);

A155084 A Catalan transform of [x^n](1/(1-2x-2x^2)) (A002605).

Original entry on oeis.org

1, 2, 8, 32, 132, 552, 2328, 9872, 42020, 179336, 766888, 3284272, 14081224, 60426576, 259490736, 1114965792, 4792924356, 20611174920, 88662405768, 381494338032, 1641837542232, 7067257125744, 30425523536592
Offset: 0

Views

Author

Paul Barry, Jan 19 2009

Keywords

Comments

Hankel transform is 4^n.

Crossrefs

Formula

G.f.: 1/(1-2x*c(x)-2(x*c(x))^2), where c(x) is the g.f. of A000108.
G.f.: 1/(1-2x-4x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-..... (continued fraction).
a(n) = Sum_{k=0..n} (k/(2n-k))*binomial(2n-k, n-k)*A002605(k), a(0) = 1.
a(n) = Sum_{0<=k<=n} A039599(n,k)*A108411(k). [Philippe Deléham, Nov 15 2009]
Apparently 3*n*a(n) +6*(3-4*n)*a(n-1) +4*(11*n-18)*a(n-2) +8*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 25 2012

A156710 Triangle read by rows, A123191 * (A002605 * (A002605 * 0^(n-k))).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 3, 6, 6, 1, 3, 6, 18, 16, 1, 3, 6, 18, 48, 44, 1, 3, 6, 18, 48, 132, 120, 136, 18, 48, 132, 360, 328, 1, 3, 6, 18, 48, 132, 360, 984, 896, 1, 3, 6, 18, 48, 132, 360, 984, 2688, 2448, 1, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 6688
Offset: 0

Views

Author

Gary W. Adamson, Feb 14 2009

Keywords

Comments

Row sums = A002605: (1, 2, 6, 16, 44, 120,...)
As a property of eigentriangles, sum of row terms = rightmost term of next row.

Examples

			First few rows of the triangle =
1;
1, 1;
1, 3, 2;
1, 3, 6, 6;
1, 3, 6, 18, 16;
1, 3, 6, 18, 48, 44;
1, 3, 6, 18, 48, 132, 120;
1, 3, 6, 18, 48, 132, 360, 328;
1, 3, 6, 18, 48, 132, 360, 984, 896;
1, 3, 6, 18, 48, 132, 360, 984, 2688, 2448;
1, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 6688;
...
		

Crossrefs

Formula

Triangle read by rows, A123191 * (A002605 * (A002605 * 0^(n-k))). A123191 is
unsigned, (A002605 * 0^(n-k))= an infinite lower triangular matrix with
A002605 as the main diagonal prefaced with a 1: (1, 1, 2, 6, 16, 44,...)
and the rest zeros.
Previous Showing 11-20 of 135 results. Next