A073397
Eighth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 18, 198, 1680, 12060, 76824, 446952, 2420352, 12363120, 60151520, 280833696, 1265442048, 5528697408, 23507763840, 97575960960, 396398370816, 1579498956288, 6184543546368, 23833455191040, 90522348871680, 339263015528448, 1255995653197824, 4597442198728704
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (18,-126,384,-144,-2016,3360,4608,-12384,-8512, 24768,18432,-26880,-32256,4608,24576,16128,4608,512).
Ninth (m=8) column of triangle
A073387.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^9 )); // G. C. Greubel, Oct 06 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^9, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
-
def A073397_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^9 ).list()
A073397_list(30) # G. C. Greubel, Oct 06 2022
A073406
Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073405.
Original entry on oeis.org
2, 36, 12, 1056, 672, 96, 43968, 40416, 10752, 864, 2396160, 2815488, 1051776, 156672, 8064, 161879040, 226492416, 105981696, 22125312, 2121984, 76032, 13044326400, 20766633984, 11446769664, 2995605504
Offset: 0
k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
2; 36,12; 1056,672,96; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073398
Ninth convolution of A002605(n) (generalized (2,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 20, 240, 2200, 16940, 115104, 711040, 4072640, 21930480, 112157760, 549010176, 2587777920, 11802273600, 52287866880, 225756241920, 952486588416, 3935984616960, 15961485957120, 63628396339200, 249702113464320, 965924035135488, 3687247950397440
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (20,-160,600,-660,-2496,7680,1920,-28320,7040, 66560,-14080,-113280,-15360,122880,79872,-42240,-76800,-40960,-10240,-1024).
Tenth (m=9) column of triangle
A073387.
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( 1/(1-2*x-2*x^2)^10 )); // G. C. Greubel, Oct 06 2022
-
CoefficientList[Series[1/(1-2*x-2*x^2)^10, {x,0,30}], x] (* G. C. Greubel, Oct 06 2022 *)
-
def A073398_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-2*x-2*x^2)^10 ).list()
A073398_list(30) # G. C. Greubel, Oct 06 2022
A073404
Coefficient triangle of polynomials (falling powers) related to convolutions of A002605(n), n>=0, (generalized (2,2)-Fibonacci). Companion triangle is A073403.
Original entry on oeis.org
2, 12, 36, 96, 672, 1056, 864, 10752, 40416, 43968, 8064, 156672, 1051776, 2815488, 2396160, 76032, 2121984, 22125312, 105981696, 226492416, 161879040, 718848, 27205632, 404656128, 2995605504
Offset: 0
k=2: U2(n)=(2*(36+12*n)*(n+1)*U0(n+1)+2*(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389.
1; 12,36; 96,672,1056; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A105607
Sylvester cyclotomic numbers for A002605.
Original entry on oeis.org
1, 2, 6, 8, 44, 10, 328, 56, 408, 76, 18272, 52, 136384, 568, 3856, 3104, 7598336, 424, 56714752, 2896, 215104, 31648, 3159738368, 3088, 536013824, 236224, 71910912, 161344, 1313964867584, 2320, 9807567290368, 9634304, 667730944, 13160704, 37860806656, 172864, 4078438577864704, 98232832, 37201186816, 9584896
Offset: 1
-
f[n_] := FullSimplify[ Expand[ Times @@ ((1+Sqrt[3])-(1-Sqrt[3])*Exp[2Pi*I*Select[Range[n-1], GCD[ #, n] == 1 &]/n])]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Aug 02 2005 *)
Original entry on oeis.org
1, 1, 1, 2, 1, 12, 1, 16, 6, 88, 1, 960, 1, 656, 264, 896, 1, 48960, 1, 53504, 1968, 36544, 1, 2795520, 44, 272768, 2448, 2980864, 1, 1547335680, 1, 2781184, 109632, 15196672, 14432, 8635760640, 1, 113429504, 818304, 8677064704, 1, 4808968273920, 1, 9252356096, 415337472, 6319476736, 1, 26795484119040, 328, 3584860454912
Offset: 1
-
f[n_] := FullSimplify[ Expand[ Times @@ ((1+Sqrt[3])-(1-Sqrt[3])*Exp[2Pi*I*Select[Range[n-1], GCD[ #, n] > 1 &]/n])]]; Table[ f[n], {n, 1, 32}] (* Robert G. Wilson v, Aug 02 2005 *)
Original entry on oeis.org
1, 1, 3, 1, 24, 3, 48, 1, 9, 24, 10, 3, 12, 48, 24, 1, 144, 9, 180, 24, 48, 10, 22, 3, 120, 12, 27, 48, 840, 24, 320, 1, 30, 144, 48, 9, 36, 180, 12, 24, 280, 48, 308, 10, 72, 22, 46, 3, 336, 120, 144, 12, 936, 27, 120, 48, 180, 840, 29, 24, 60, 320, 144, 1, 24, 30, 1122, 144
Offset: 1
Reading 0, 1, 2, 6, 16, 44, 120, 328, 896, 2448,.. modulo 12 gives 0, 1, 2, 6, 4, 8, 0, 4, 8, 0, 4, 8 ,.. with period length a(n=12)= 3.
-
a={1};For[n=2,n<=80,n++,{x={{0,1}}; t={1,1}; While[ !MemberQ[x,t], {xl = x[[ -1]]; AppendTo[x,t]; t={Mod[2*(t[[1]]+xl[[1]]),n], Mod[2*(t[[2]] + xl[[2]]),n]};}]; p = Flatten[Position[x,t]][[1]]; AppendTo[a, Length[x] - p+1];}]; Print[a]; (* John W. Layman, Aug 10 2010 *)
A127259
Sequence arising from the factorization of F(n)=A002605 and L(n)=A080040 F(0)=0, F(1)=1, F(n)=2*F(n-1)+2*F(n-2), L(0)=2, L(1)=2, L(n)=2*L(n-1)+2*L(n-2).
Original entry on oeis.org
2, 1, 10, 8, 76, 6, 568, 56, 424, 44, 31648, 52, 236224, 328, 2320, 3104, 13160704, 408, 98232832, 2896, 129088, 18272, 5472827392, 3088, 537496576, 136384, 71911936, 161344, 2275853910016, 3856, 16987204845568
Offset: 1
F(12)=a(1)*a(2)*a(3)*a(4)*a(6)*a(12)=2*1*10*8*6*52=49920
F(9)=a(2)*a(6)*a(18)= 1*6*408=2448
L(12)=a(8)*a(24)=56*3088=172928
L(21)=a(1)*a(3)*a(7)*a(21)=2*10*568*129088=1466439680
-
with(numtheory): a[1]:=2:a[2]:=1:for n from 3 to 60 do a[n]:=round(evalf((sqrt(3)-1)^degree(cyclotomic(n,x),x)*cyclotomic(n,2+sqrt(3)),30)) od: seq(a[n],n=1..60);
A155084
A Catalan transform of [x^n](1/(1-2x-2x^2)) (A002605).
Original entry on oeis.org
1, 2, 8, 32, 132, 552, 2328, 9872, 42020, 179336, 766888, 3284272, 14081224, 60426576, 259490736, 1114965792, 4792924356, 20611174920, 88662405768, 381494338032, 1641837542232, 7067257125744, 30425523536592
Offset: 0
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 3, 6, 6, 1, 3, 6, 18, 16, 1, 3, 6, 18, 48, 44, 1, 3, 6, 18, 48, 132, 120, 136, 18, 48, 132, 360, 328, 1, 3, 6, 18, 48, 132, 360, 984, 896, 1, 3, 6, 18, 48, 132, 360, 984, 2688, 2448, 1, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 6688
Offset: 0
First few rows of the triangle =
1;
1, 1;
1, 3, 2;
1, 3, 6, 6;
1, 3, 6, 18, 16;
1, 3, 6, 18, 48, 44;
1, 3, 6, 18, 48, 132, 120;
1, 3, 6, 18, 48, 132, 360, 328;
1, 3, 6, 18, 48, 132, 360, 984, 896;
1, 3, 6, 18, 48, 132, 360, 984, 2688, 2448;
1, 3, 6, 18, 48, 132, 360, 984, 2688, 7344, 6688;
...
Comments