cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A356004 a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/(d! * (k/d)!).

Original entry on oeis.org

1, 4, 14, 64, 322, 2054, 14380, 116722, 1060580, 10636042, 116996464, 1411275650, 18346583452, 256869465610, 3856674412952, 61743633813634, 1049641774831780, 18896533652098442, 359034139389870400, 7182372973523436802, 150833211474559084844
Offset: 1

Views

Author

Seiichi Manyama, Jul 22 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * Sum[DivisorSum[k, 1/(#!*(k/#)!) &], {k, 1, n}]; Array[a, 21] (* Amiram Eldar, Jul 22 2022 *)
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k,d,1/(d!*(k/d)!)));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, (exp(x^k)-1)/k!)/(1-x)))

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1)/k!.
a(n) = n! * Sum_{k=1..n} A121860(k)/k!.

A381107 Expansion of e.g.f. -log(1-x) * (exp(x) - 1) / (1-x).

Original entry on oeis.org

0, 0, 2, 12, 66, 395, 2665, 20307, 173488, 1646745, 17216653, 196730567, 2440331300, 32666847941, 469457190501, 7210003071247, 117862325748960, 2043420738374545, 37453428525580725, 723643767046525111, 14700326905250293556, 313236372986056228013, 6985951253209713959645
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(n, k)*abs(stirling(k+1, 2, 1)));

Formula

a(n) = Sum_{k=0..n-1} binomial(n,k) * |Stirling1(k+1,2)|.
a(n) = A073596(n) - A000254(n).

A381108 Expansion of e.g.f. log(1-x)^2 * (exp(x) - 1) / (2 * (1-x)).

Original entry on oeis.org

0, 0, 0, 3, 30, 245, 2010, 17549, 165942, 1705584, 19024275, 229478689, 2981315139, 41545542818, 618579336284, 9804891730633, 164897938095108, 2933486106772376, 55047126101826453, 1086816606230786217, 22523274090016854661, 488907589907823010158, 11093875133012393113766
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n-1, binomial(n, k)*abs(stirling(k+1, 3, 1)));

Formula

a(n) = Sum_{k=0..n-1} binomial(n,k) * |Stirling1(k+1,3)|.
a(n) = A381024(n) - A000399(n+1).

A345887 Number of tilings of an n-cell circular array with rectangular tiles of any size, and where the number of possible colors of a tile is given by the largest cell covered.

Original entry on oeis.org

1, 6, 30, 164, 1030, 7422, 60620, 554248, 5611770, 62353010, 754471432, 9876716940, 139097096918, 2097156230470, 33704296561140, 575219994643472, 10389911153247730, 198019483156015578, 3971390745517868000, 83608226221428800020, 1843561388182505040462
Offset: 1

Views

Author

Lara Pudwell, Jun 28 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=1, 1, a(n-1)*n^2/(n-1)+n) end:
    seq(a(n), n=1..21);  # Alois P. Heinz, Jun 28 2021
  • Mathematica
    With[{r = Range[21]}, r*Rest@ FoldList[Times @@ {##} + 1 &, 0, r]] (* Michael De Vlieger, Jun 28 2021 *)
  • PARI
    a(n) = n*sum(k=1, n, n!/k!); \\ Michel Marcus, Jun 29 2021

Formula

a(n) = n * Sum_{k=1..n} n!/k!.
a(n) = n * A002627(n).
From Alois P. Heinz, Jun 28 2021: (Start)
E.g.f.: (exp(x)-x)/(x-1)^2 - exp(x).
a(n) = A193657(n) - 1. (End)
D-finite with recurrence a(n) +(-n-2)*a(n-1) +(n-1)*a(n-2) -2 =0. - R. J. Mathar, Jan 11 2024
Previous Showing 41-44 of 44 results.