cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A321427 Number of connected labeled closely cubic graphs on 2n+1 nodes.

Original entry on oeis.org

0, 0, 30, 5670, 2543940, 2147121900, 3060711804150, 6822508357214550, 22450423357516354200, 104310014134397398727400, 660475190873012530467201750, 5537072793132139084007288856750, 60005787711473418534665255077267500, 823803200874542135657355819087997282500
Offset: 0

Views

Author

R. J. Mathar, Nov 09 2018

Keywords

Comments

Closely cubic graphs are cubic graphs (A002829) where 1 point has degree 2. All other points have degree 3. They are constructed by removing a point from the fairly cubic graphs (A321426).

Crossrefs

Programs

  • Mathematica
    nmax = 13;
    b[n_] := Sum[Sum[Sum[((-1)^(i + j) (2n)! (2(3n - i - 2j - 3k))!)/(2^(5n - i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
    seq[n_] := seq[n] = Module[{v = Table[0, {n + 1}]}, For[k = 2, k <= n, k++, v[[k + 1]] = 3k b[k] + 2k(2k - 1) v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k - 1]]]; v];
    a[n_] := (2n+1) seq[nmax][[n+1]];
    Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 23 2018, after Andrew Howroyd *)

Formula

a(n) = (2*n+1)*A321426(n). [Wormald eq. (2.2)]

Extensions

Terms a(10) and beyond from Andrew Howroyd, Nov 09 2018

A338978 Number of labeled 5-regular graphs on 2n nodes.

Original entry on oeis.org

1, 0, 0, 1, 3507, 66462606, 2977635137862, 283097260184159421, 52469332407700365320163, 17647883828569858659972268092, 10148613081040117624319536901932188, 9494356410654311931931879706070629989407, 13859154719468565627065764000731047706917194485
Offset: 0

Views

Author

Atabey Kaygun, Dec 18 2020

Keywords

Crossrefs

With interspersed zeros, column k=5 of A059441.
Cf. A001205, A002829, A005815, A165626 (unlabeled case).

A007102 Number of labeled disconnected trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 0, 0, 35, 14700, 11832975, 15245900670, 29683109280825, 84114515340655800, 335974271076054435825, 1839316574841276904122750, 13461678841737111645720135075, 128798406388658994689642297857500
Offset: 0

Views

Author

Keywords

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

a(n) = A002829(n) - A004109(n), for n>0. - Sean A. Irvine, Oct 12 2017

A286757 Number of labeled connected rooted trivalent graphs with 2n nodes.

Original entry on oeis.org

0, 4, 120, 33600, 18471600, 18386121600, 30231607606200, 76388992266787200, 281063897503929540000, 1444102677105174358272000, 10020068498645397815029407000, 91355440119583548608158042584000, 1069762020017605579789451640683370000
Offset: 1

Views

Author

Sean A. Irvine, May 13 2017

Keywords

Comments

A006607 gives values matching Table 1 (p. 342) of Wormald. However, the values in the table for n > 4 do not appear to match formulas given for generating the table.

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.

Crossrefs

Formula

Let b(0)=b(1)=0, b(n) = 2*binomial(2*n, 2)*b(n-1) + 12*binomial(2*n, 4)*b(n-2) + 6*binomial(2*n, 3)*A002829(n-1) + 60*binomial(2*n, 5)*A002829(n-2) + 1260*binomial(2*n, 7)*A002829(n-3). a(n)=b(n) except a(2)=4.
Let Q(x) be an e.g.f. for A002829: Q(x) = 1 + (1/4!)*x^4 + (70/6!)*x^6 + (19355/8!)*x^8 + ...; then A(x), the e.g.f. for this sequence, satisfies (2 - 2*x^2 - x^4) * (A(x) - (1/6)*x^4) = (2*x^3 + x^5 + (1/2)*x^7) * Q'(x) where Q'(x) is the derivative of Q(x) with respect to x.

A109542 a(n) = number of labeled 3-regular (trivalent) multi-graphs without self-loops on 2n vertices with a maximum of 2 edges between any pair of nodes. Also a(n) = number of labeled symmetric 2n X 2n matrices with {0,1,2}-entries with row sum equal to 3 for each row and trace 0.

Original entry on oeis.org

0, 7, 640, 170555, 94949400, 95830621425, 159062872168200, 404720953797785625
Offset: 1

Views

Author

Jeremy Gardiner, Aug 29 2005

Keywords

Examples

			a(2)=7 because for 2*n=4 nodes there are 7 possible labeled graphs whose adjacency matrices are as follows:
0 2 1 0
2 0 0 1
1 0 0 2
0 1 2 0;
0 1 2 0
1 0 0 2
2 0 0 1
0 2 1 0;
0 2 0 1
2 0 1 0
0 1 0 2
1 0 2 0;
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0;
0 0 2 1
0 0 1 2
2 1 0 0
1 2 0 0;
0 1 0 2
1 0 2 0
0 2 0 1
2 0 1 0;
0 0 1 2
0 0 2 1
1 2 0 0
2 1 0 0.
		

Crossrefs

Extensions

a(5)-a(8) from Max Alekseyev, Aug 30 2005
Previous Showing 21-25 of 25 results.