cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 88 results. Next

A336636 Sum_{n>=0} a(n) * x^n / (n!)^2 = exp(BesselI(0,2*sqrt(x))^3 - 1).

Original entry on oeis.org

1, 3, 33, 660, 20817, 935388, 56149098, 4311694467, 410200118577, 47174279349540, 6431874002292978, 1023398757621960327, 187566773426941146498, 39164789611542644630415, 9229712819952662426436507, 2435069724188535096598261305
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 28 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 15; CoefficientList[Series[Exp[BesselI[0, 2 Sqrt[x]]^3 - 1], {x, 0, nmax}], x] Range[0, nmax]!^2
    a[0] = 1; a[n_] := a[n] = (1/n) Sum[Binomial[n, k]^2 HypergeometricPFQ[{1/2, -k, -k}, {1, 1}, 4] k a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}]

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(n,k)^2 * A002893(k) * k * a(n-k).

A367177 Triangle read by rows, T(n, k) = [x^k] hypergeom([1/2, -n, -n], [1, 1], 4*x).

Original entry on oeis.org

1, 1, 2, 1, 8, 6, 1, 18, 54, 20, 1, 32, 216, 320, 70, 1, 50, 600, 2000, 1750, 252, 1, 72, 1350, 8000, 15750, 9072, 924, 1, 98, 2646, 24500, 85750, 111132, 45276, 3432, 1, 128, 4704, 62720, 343000, 790272, 724416, 219648, 12870
Offset: 0

Views

Author

Peter Luschny, Nov 07 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,   2;
  [2] 1,   8,    6;
  [3] 1,  18,   54,     20;
  [4] 1,  32,  216,    320,      70;
  [5] 1,  50,  600,   2000,    1750,     252;
  [6] 1,  72, 1350,   8000,   15750,    9072,     924;
  [7] 1,  98, 2646,  24500,   85750,  111132,   45276,    3432;
  [8] 1, 128, 4704,  62720,  343000,  790272,  724416,  219648,   12870;
  [9] 1, 162, 7776, 141120, 1111320, 4000752, 6519744, 4447872, 1042470, 48620;
		

Crossrefs

Cf. A002893 (row sum), A002897 (central column), A000984 (main diagonal).

Programs

  • Maple
    p := n -> hypergeom([1/2, -n, -n], [1, 1], 4*x):
    T := (n, k) -> coeff(simplify(p(n)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..9);

Formula

T(n, k) = binomial(n, k)^2 * binomial(2*k, k).

A318397 Triangle read by rows: T(n,k) = binomial(n,k)^2 * binomial(2*(n-k), n-k).

Original entry on oeis.org

1, 2, 1, 6, 8, 1, 20, 54, 18, 1, 70, 320, 216, 32, 1, 252, 1750, 2000, 600, 50, 1, 924, 9072, 15750, 8000, 1350, 72, 1, 3432, 45276, 111132, 85750, 24500, 2646, 98, 1, 12870, 219648, 724416, 790272, 343000, 62720, 4704, 128, 1, 48620, 1042470, 4447872, 6519744, 4000752, 1111320, 141120, 7776, 162, 1
Offset: 0

Views

Author

Michael Somos, Aug 25 2018

Keywords

Comments

The square of the triangular matrix {binomial(n, k)^2}_{k=0..n} A008459 read by rows.

Examples

			Triangle begins:
   1
   2   1
   6   8   1
  20  54  18   1
  70 320 216  32   1
...
		

Crossrefs

Row sums give A002893.
Cf. A008459.

Programs

  • Mathematica
    T[ n_, k_] := Binomial[n, k]^2 Binomial[2 n - 2 k, n - k];
  • PARI
    {T(n, k) = binomial(n, k)^2 * binomial(2*(n-k), n-k)};

A357770 Number of 2n-step closed paths on quasi-regular rhombic (rhombille) lattice starting from a degree-3 node.

Original entry on oeis.org

1, 3, 30, 372, 5112, 74448, 1125408, 17461440, 276193152, 4433878272, 72022049280, 1181146106880, 19524892723200, 324921616773120, 5438136568504320, 91467357685235712, 1545090682931085312, 26199310348842762240, 445746455962332561408, 7606624602795641929728
Offset: 0

Views

Author

Dave R.M. Langers, Oct 12 2022

Keywords

Comments

Paths that return to the same point in a quasi-regular rhombic lattice must always have even length (i.e., 2n) because of parity: degree-3 nodes alternate with degree-6 nodes.

Examples

			a(2)=30, because there are 3*3=9 paths that visit one of three adjacent vertices, return to the origin, and again visit an adjacent vertex and return to the origin; 3*5=15 paths visiting one of five distance-2 vertices that are adjacent to the three adjacent vertices; plus 3*2=6 paths traversing the perimeter of three adjacent rhombi in counterclockwise or clockwise direction; all resulting in a closed path of length 2n=2*2=4.
		

Crossrefs

The accompanying sequences for the number of paths that return to a degree-6 node is A357771.
Similar sequences for square, hexagonal, and honeycomb lattices are A002894, A002898 and A002893.

Programs

  • Mathematica
    a[0] := 1; a[n_] := Sum[Binomial[n, k]*Sum[Binomial[n, j]*Sum[(1/(2^(j+1)))*Binomial[2*i, j]*Binomial[2*i, i]*Binomial[2*(j-i), j-i], {i, 0, j}], {j, 0, n}], {k, 0, n}]; Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 20 2024 *)

Formula

a(0) = 1; a(n) = Sum_{k=0..n} (binomial(n, k) * Sum_{j=0..n} (binomial(n, j) * Sum_{i=0..j} ((1/(2^(j + 1)))*binomial(2*i, j)*binomial(2*i, i)*binomial(2*(j-i), j-i)))). - Detlef Meya, May 20 2024

Extensions

More terms from Detlef Meya, May 20 2024

A357771 Number of 2n-step closed paths on quasi-regular rhombic (rhombille) lattice starting from a degree-6 node.

Original entry on oeis.org

1, 6, 60, 744, 10224, 148896, 2250816, 34922880, 552386304, 8867756544, 144044098560, 2362292213760, 39049785446400, 649843233546240, 10876273137008640, 182934715370471424, 3090181365862170624, 52398620697685524480, 891492911924665122816, 15213249205591283859456, 260315328935885892747264
Offset: 0

Views

Author

Dave R.M. Langers, Oct 12 2022

Keywords

Comments

Paths that return to the same point in a quasi-regular rhombic lattice must always have even length (i.e., 2n) because of parity: degree-6 nodes alternate with degree-3 nodes.

Examples

			a(2)=60, because there are 6*6=36 paths that visit one of six adjacent vertices, return to the origin, and again visit an adjacent vertex and return to the origin; plus 6*4=24 paths that pass through one of the six vertices at distance 2, leaving and returning via any of two available paths to that vertex; all resulting in a closed path of length 2n=2*2=4.
		

Crossrefs

The accompanying sequences for the number of paths that return to a degree-3 node is A357770.
Similar sequences for square, hexagonal, and honeycomb lattices are A002894, A002898 and A002893.

Programs

  • Mathematica
    a[n_] := Sum[Binomial[n, k]*Sum[Binomial[n, j]*Sum[(1/(2^j))*Binomial[2*i, j]*Binomial[2*i, i]*Binomial[2*(j-i), j-i],{i,0,j}],{j,0,n}],{k,0,n}]; Flatten[Table[a[n],{n,0,17}]] (* Detlef Meya, May 15 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n, k) * sum(j=0, n, binomial(n, j) * sum(i=0, j, (1/(2^j)*binomial(2*i, j)*binomial(2*i, i)*binomial(2*(j-i), j-i))))); \\ Michel Marcus, May 20 2024

Formula

a(n) = Sum_{k=0..n} (binomial(n, k) * Sum_{j=0..n} (binomial(n, j) * Sum_{i=0..j} ((1/(2^j))*binomial(2*i, j)*binomial(2*i, i)*binomial(2*(j-i), j-i)))). - Detlef Meya, May 15 2024

Extensions

More terms from Detlef Meya, May 15 2024

A357810 Number of n-step closed paths on the Cairo pentagonal lattice graph starting from a degree-4 node.

Original entry on oeis.org

1, 0, 4, 0, 24, 8, 164, 136, 1236, 1704, 10116, 19144, 88616, 205208, 818764, 2155160, 7873440, 22463400, 77954740, 233894600, 788314984, 2440865400, 8095906076, 25569342520, 84107990356, 269034666280
Offset: 0

Views

Author

Dave R.M. Langers, Oct 13 2022

Keywords

Examples

			For n=2, the a(2) = 4 solutions visit one of the four vertices adjacent to the initial vertex, and then return.
For n=5, the a(5) = 8 solutions consist of counterclockwise or clockwise traversals of the circumference of any of the four pentagons that surround the initial vertex.
		

Crossrefs

The accompanying sequences for the number of paths that return to a degree-3 node is A357811.
Similar sequences for square, hexagonal, and honeycomb lattices are A002894, A002898 and A002893.

A357811 Number of n-step closed paths on the Cairo pentagonal lattice graph starting from a degree-3 node.

Original entry on oeis.org

1, 0, 3, 0, 17, 6, 115, 100, 867, 1236, 7117, 13770, 62545, 146866, 579387, 1537920, 5581725, 16002810, 55329435, 166465820, 559913787, 1736268432, 5752600961, 18182999274, 59777071435, 191287075320
Offset: 0

Views

Author

Dave R.M. Langers, Oct 13 2022

Keywords

Examples

			For n=2, the a(2) = 3 solutions visit one of the three vertices adjacent to the initial vertex, and then return.
For n=5, the a(5) = 6 solutions consist of counterclockwise or clockwise traversals of the circumference of any of the three pentagons that surround the initial vertex.
		

Crossrefs

The accompanying sequences for the number of paths that return to a degree-4 node is A357810.
Similar sequences for square, hexagonal, and honeycomb lattices are A002894, A002898 and A002893.

A291277 Primes p such that p does not divide any term of the Apery-like sequence A081085.

Original entry on oeis.org

3, 11, 17, 19, 43, 59, 73, 83, 89, 107, 179, 211, 227, 233, 241, 257, 307, 331, 337, 379, 401, 409, 419, 433, 449, 457, 467, 521, 547, 563, 577, 587, 593, 601, 619, 641, 643, 683, 691, 739, 761, 769, 811, 827, 859, 881, 883, 929, 937, 947, 953
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291278 Primes p such that p does not divide any term of the Apery-like sequence A006077.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 61, 73, 97, 101, 113, 137, 149, 157, 173, 181, 197, 229, 241, 257, 277, 313, 317, 349, 353, 389, 409, 421, 433, 449, 457, 461, 509, 541, 569, 577, 593, 613, 641, 653, 661, 673, 709, 757, 761, 769, 797, 809, 829, 853, 857
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291279 Primes p such that p does not divide any term of the Apery-like sequence A093388.

Original entry on oeis.org

5, 11, 29, 31, 59, 79, 107, 131, 149, 151, 173, 179, 193, 197, 199, 241, 251, 271, 317, 409, 433, 439, 443, 457, 461, 509, 557, 587, 601, 607, 659, 677, 701, 727, 751, 769, 773, 797, 821, 823, 827, 919, 971, 1009, 1013, 1019, 1033, 1039, 1061, 1063, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Previous Showing 71-80 of 88 results. Next