cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A316893 Number of aperiodic integer partitions of n into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 3, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 1, 5, 2, 9, 3, 3, 3, 4, 2, 6, 6, 3, 4, 9, 5, 10, 4, 10, 8, 15, 10, 21, 12, 14, 16, 18, 9, 30, 18, 17, 16, 28, 16, 29, 25, 26, 30, 28, 33, 48, 31
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(71)-a(80) from Giovanni Resta, Jul 16 2018

A374582 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_n such that 1 <= x_1 <= ... <= x_n and x_k | x_n for all k = 1..n.

Original entry on oeis.org

1, 1, 3, 12, 97, 1568, 76309, 16993752
Offset: 1

Views

Author

Max Alekseyev, Jul 12 2024

Keywords

Crossrefs

A130738 Greedy odd Egyptian fraction representation of 1 (without repeats).

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 23, 721, 979007, 661211444787, 622321538786143185105739, 511768271877666618502328764212401495966764795565, 209525411280522638000804396401925664136495425904830384693383280180439963265695525939102230139815
Offset: 1

Views

Author

Jon Wild, Jul 06 2007

Keywords

Comments

a(n) is the largest odd Egyptian fraction as yet unused, such that the sum of the Egyptian fractions so far does not exceed 1. The sum of a(n) is a greedy representation (greedy because each step bites off as much as possible) of 1, using only odd Egyptian fractions, all distinct.
Terms a(11)-a(13) were found by David Eppstein (see posting from Nov 09 1996), who says that he found them by applying EgyptOddGreedy[2/3,5] from his Egyptian fractions notebook.

Examples

			E.g. a(8)=721 because 1/721 is the largest odd Egyptian fraction less than 1-1/a(1)-1/a(2)-1/a(3)-1/a(4)-1/a(5)-1/a(6)-1/a(7).
1/3 + 1/5 + 1/7 + 1/9 + 1/11 + 1/13 + 1/23 + 1/721 + 1/979007 + 1/661211444787 + 1/622321538786143185105739 + 1/511768271877666618502328764212401495966764795565 + 1/209525411280522638000804396401925664136495425904830384693383280180439963265695525939102230139815 = 1.
		

References

  • Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342
  • R. K. Guy, Unsolved Problems Number Theory, Sect D11.

Crossrefs

Extensions

Edited and a(11)-a(13) added by N. J. A. Sloane, May 29 2010, at the suggestion of Jan Szejko.

A316894 Number of aperiodic integer partitions of n whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 4, 1, 5, 1, 2, 3, 2, 4, 5, 5, 5, 4, 3, 5, 4, 8, 6, 9, 7, 5, 6, 10, 6, 12, 8, 7, 7, 6, 6, 12, 12, 8, 18, 13, 16, 19, 17, 18, 21, 26, 26, 28, 29, 21, 29, 29, 27, 38, 32, 26, 37, 32, 38, 39, 49, 36, 61, 46, 55
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,IntegerQ[1/Sum[1/m,{m,#}]]]&]],{n,30}]

Extensions

a(51)-a(78) from Giovanni Resta, Jul 16 2018

A316895 Number of aperiodic integer partitions of n whose reciprocal sum is an integer.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 0, 2, 2, 5, 2, 7, 5, 7, 6, 13, 8, 18, 13, 20, 19, 32, 21, 39, 35, 49, 48, 74, 60, 96, 86, 110, 111, 151, 135, 199, 192, 235, 239, 319, 299, 404, 394, 477, 506, 638, 609, 782, 788, 934, 978, 1197, 1193, 1466, 1501, 1752, 1851, 2212, 2227
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(11) = 5 partitions are (632), (4421), (33311), (2222111), (221111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,30}]

Extensions

a(51)-a(60) from Alois P. Heinz, Jul 17 2018

A316896 Number of aperiodic integer partitions of n whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 3, 0, 1, 0, 1, 1, 2, 3, 2, 2, 1, 2, 2, 2, 3, 5, 5, 2, 2, 5, 5, 9, 3, 4, 6, 4, 3, 6, 8, 4, 10, 9, 8, 11, 7, 13, 12, 15, 15, 21, 18, 16, 21, 19, 17, 30, 23, 19, 23, 28, 25, 29, 34, 29, 44, 28, 46, 48, 42
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(37) = 5 partitions are (24,8,3,2), (20,5,4,4,4), (15,10,6,3,3), (14,7,7,7,2), (10,10,10,5,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Length/@Split[#]==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(51)-a(80) from Giovanni Resta, Jul 16 2018

A316897 Number of integer partitions of n into relatively prime parts whose reciprocal sum is 1.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 3, 1, 2, 1, 1, 1, 2, 1, 5, 3, 1, 1, 5, 2, 9, 3, 3, 3, 4, 2, 6, 6, 3, 4, 9, 5, 10, 5, 10, 9, 15, 10, 21, 12, 14, 16, 18, 9, 30, 18, 17, 17, 28, 16, 29, 26, 26, 30, 28, 33, 48, 31
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.

Examples

			The a(43) = 9 partitions:
(24,8,4,4,3)
(21,7,7,6,2)
(20,12,5,3,3)
(20,8,8,5,2)
(15,15,6,5,2)
(15,12,10,4,2)
(14,7,7,7,4,4)
(12,8,8,6,6,3)
(10,10,10,5,4,4).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,Sum[1/m,{m,#}]==1]&]],{n,30}]

Extensions

a(71)-a(80) from Giovanni Resta, Jul 16 2018

A316899 Number of integer partitions of n into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 6, 6, 8, 8, 10, 10, 14, 14, 19, 20, 25, 29, 33, 34, 41, 47, 54, 61, 75, 81, 97, 103, 121, 132, 155, 164, 200, 221, 252, 274, 320, 348, 405, 442, 501, 554, 639, 688, 784, 854, 968, 1053, 1198, 1298, 1475, 1602, 1797, 1965, 2213, 2399
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.

Examples

			The a(13) = 8 partitions are (63211), (442111), (33322), (3331111), (2222221), (222211111), (22111111111), (1111111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,IntegerQ[Sum[1/m,{m,#}]]]&]],{n,30}]
  • PARI
    a(n)={my(s=0); forpart(p=n, if(gcd(p)==1 && frac(sum(i=1, #p, 1/p[i]))==0, s++)); s} \\ Andrew Howroyd, Aug 26 2018

Extensions

a(51)-a(60) from Andrew Howroyd, Aug 26 2018

A316900 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is an integer.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 36, 64, 72, 128, 144, 162, 195, 250, 256, 288, 294, 324, 390, 500, 512, 576, 588, 648, 780, 1000, 1024, 1125, 1152, 1176, 1296, 1458, 1560, 1755, 2000, 2048, 2250, 2304, 2352, 2592, 2646, 2916, 3120, 3185, 3510, 4000, 4096, 4500, 4608
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (11), (111), (1111), (221), (11111), (2211), (111111), (22111), (1111111), (221111), (22221), (632), (3331), (11111111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A316901 Heinz numbers of integer partitions into relatively prime parts whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 195, 3185, 5467, 6475, 6815, 8455, 10527, 15385, 16401, 17719, 20445, 20535, 21045, 25365, 28897, 40001, 46155, 49841, 50431, 54677, 92449, 101543, 113849, 123469, 137731, 156883, 164255, 171941, 185803, 218855, 228085, 230347, 261457, 267883, 274261
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			5467 is the Heinz number of (20,5,4) and 1/20 + 1/5 + 1/4 = 1/2, so 5467 belongs to the sequence.
The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (6,3,2), (6,4,4,3), (20,5,4), (12,4,3,3), (15,10,3), (24,8,3), (10,5,5,2)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,100000],And[GCD@@PrimePi/@FactorInteger[#][[All,1]]==1,IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]
Previous Showing 41-50 of 55 results. Next