A258375
Least primitive weird number with n prime divisors, counting multiplicity.
Original entry on oeis.org
70, 836, 7192, 73616, 519712, 3963968, 33277312, 263144192, 2113834496, 16995175424, 135895635968, 1093862207488, 8752602423296, 70102452125696, 561472495910912, 4494940873621504, 35979456528646144, 287952747599495168
Offset: 3
a(3) = 2^1 * 5 * 7 = 70
a(4) = 2^2 * 11 * 19 = 836
a(5) = 2^3 * 29 * 31 = 7192
a(6) = 2^4 * 43 * 107 = 73616
a(7) = 2^5 * 109 * 149 = 519712
a(8) = 2^6 * 241 * 257 = 3963968
a(9) = 2^7 * 499 * 521 = 33277312
a(10) = 2^8 * 997 * 1031 = 263144192
a(11) = 2^9 * 2011 * 2053 = 2113834496
a(12) = 2^10 * 4049 * 4099 = 16995175424
a(13) = 2^11 * 8101 * 8191 = 135895635968
a(14) = 2^12 * 16273 * 16411 = 1093862207488
a(15) = 2^13 * 32603 * 32771 = 8752602423296
a(16) = 2^14 * 65287 * 65537 = 70102452125696
a(17) = 2^15 * 130729 * 131071 = 561472495910912
a(18) = 2^16 * 261637 * 262147 = 4494940873621504
a(19) = 2^17 * 523571 * 524287 = 35979456528646144
a(20) = 2^18 * 1047559 * 1048583 = 287952747599495168
a(21) = 2^19 * 2095721 * 2097169 = 2304288287017664512
a(22) = 2^20 * 4192267 * 4194319 = 18437851191624859648
a(23) = 2^21 * 8385719 * 8388617 = 147523287039340445696
a(24) = 2^22 * 16773149 * 16777259 = 1180308456157336305664
a(25) = 2^23 * 33548689 * 33554467 = 9443126304886073851904
a(26) = 2^24 * 67100681 * 67108879 = 75548667373415913488384
a(27) = 2^25 * 134206169 * 134217757 = 604410983292363190829056
a(28) = 2^26 * 268419077 * 268435459 = 4835408274665227893604352
a(29) = 2^27 * 536847791 * 536870923 = 38683960976635781347016704
a(30) = 2^28 * 1073709061 * 1073741827 = 309475567394195954395512832
-
(* copy the terms from A002975, assign them equal to 'lst' and then *) Table[ Min@ Select[ lst, PrimeOmega@# == n &], {n, 3, 12}]
-
a(n)=for(k=1,#A=A002975,bigomega(A[k])==n&&return(A[k])) \\ This assumes A002975 is defined as a set or vector with enough terms. A002975 could be replaced by A258882 (for which much larger terms are known) if we assume that all terms are in that sequence. - M. F. Hasler, Jul 08 2016
-
A258375(n)={ forprime(q=2^n-1,, my(p=precprime((2^(n-1)-1)*(q+1)\(q-2^(n-1)+1)),P); is_A006037(2^(n-2)*p*q) || next; while( is_A006037(2^(n-2)*q*P=precprime(p-1)), p=P); return(2^(n-2)*p*q))} \\ This assumes that all terms are of the form 2^k*p*q. It seems to give correct results at least up to n=30. - M. F. Hasler, Jul 13 2016
a(17) and a(19) corrected, and new terms a(21) - a(30), from
M. F. Hasler, Jul 13 2016
A258374
Least primitive weird number with n prime divisors, not counting multiplicity.
Original entry on oeis.org
70, 4030, 4199030, 1550860550
Offset: 3
-
(* copy the terms from A002975, assign them equal to 'lst' and then *) Table[ Min@ Select[ lst, PrimeNu@# == n &], {n, 3, 6}]
A242998
Number of integers k such that R = (2^k*Q - Q - 1)/(Q + 1 - 2^k) is a prime number, when Q = A000668(n) is the n-th Mersenne prime.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
For given p=A000043(n), the following k's yield a prime R:
p : k's (and resulting primes R, Q=2^p-1 and/or weird W=2^(k-1)*Q*R)
2 : -
3 : 2 (R=5, Q=7, W=70)
5 : 4 (R=29, Q=31, W=7192)
7 : 4 (R=17, Q=127, W=17272), 5 (R=41, Q=127, W=83312)
13 : 11 (R=2729, Q=8191, W=22889716736)
17 : 13 (R=8737, Q=131071, W=4690605371392)
19 : 16 (R=74897, W=1286718208049152), 17 (R=174761, W=6004730783793152)
31 : 16 (R=65537, W=2^15*(2^31-1)*R), 29 (R=715827881, W=2^28*(2^31-1)*R)
61 : 57 (R=153722867280912929, W=2^56*(2^61-1)*R)
89 : 78 (R=302379100949042568368129, W=2^77*(2^89-1)*R)
107 through 86243 : none.
107 through 3021377: none. _Robert Price_, Sep 05 2019
The present sequence lists the number of k's in each line.
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
- E. Weisstein, Weird numbers, on MathWorld - a Wolfram web ressource.
See also
A320875 for more general solutions to R = (MQ-1)/(Q-M) = prime.
-
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
43112609};
lst = {};
For[i = 1, i <= 28, i++,
p = A000043[[i]];
kc = 0;
For[k = 1, k < p, k++,
r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
If[! IntegerQ[r], Continue[]];
If[PrimeQ[r], kc++]];
AppendTo[lst, kc]];
lst (* Robert Price, Sep 05 2019 *)
-
A242998(n,p=A000043[n])={sum(k=p\2+1, p-1, Mod(2, 2^(p-k)-1)^k==2 && ispseudoprime(2^k-1+(2^k-2)/(2^(p-k)-1)))}
A273815
Primitive weird numbers (pwn) with nonsquarefree odd part.
Original entry on oeis.org
1550860550, 2319548096, 66072609790, 114141404156, 232374697216
Offset: 1
a(1) = 1550860550 = 2 * 5^2 * 29 * 37 * 137 * 211 = A258885(1): the smallest pwn with 6 (distinct) prime divisors.
a(2) = 2319548096 = 2^6 * 137^2 * 1931 = A258401(45), but not in A258882 nor A258883, cf. comment.
a(3) = 66072609790 = 2 * 5 * 11 * 127^2 * 167 * 223 = A258885(3).
a(4) = 114141404156 = 2^2 * 13^2 * 19 * 383 * 23203 = A258401(123), but not in A258884, cf. comment.
a(5) = 232374697216 = 2^8 * 797^2 * 1429 = A258401(143), but not in A258882 nor A258883, cf. comment.
A242025
Primes of the form R = 2^k-1+(2^k-2)/(2^(p-k)-1), where p are Mersenne prime exponents listed in A000043.
Original entry on oeis.org
5, 17, 29, 41, 2729, 8737, 65537, 74897, 174761, 715827881, 153722867280912929, 302379100949042568368129
Offset: 1
For given p = A000043(n), the following k yield a prime R and an associated (primitive) weird number W = 2^(k-1)*(2^p-1)*R in A258882 c A002975 c A006037:
For p = 2, no k yields a prime R = 2^k-1+(2^k-2)/(2^(p-k)-1).
For p = 3, k = 2 yields R = 5 and the (smallest) weird number W = 70 = A006037(1).
For p = 5, k = 4 yields R = 29 = a(3) and W = 7192 = A258882(3).
For p = 7, k = 4 yields R = 17 = a(2) and W = 17272 = A258882(7),
and k = 5 yields R = 41 = a(4) and W = 83312 = A258882(9).
For p = 13, k = 11 yields R = 2729 = a(5) and W = 22889716736 = A258882(288)
For p = 17, k = 13 yields R = 8737 = a(6) and W = 4690605371392 = A258882(1203).
For p = 19, k = 16 yields R = 74897 = a(8), W = 1286718208049152 = A258882(7154),
and k = 17 yields R = 174761 = a(9), W = 6004730783793152 = A258882(11466).
For p = 31, k = 16 yields R = 65537 = a(7) (smaller than both R's for p = 19),
and k = 29 yields R = 715827881 = a(10).
For p = 61, only k = 57 yields a prime R = 153722867280912929 = a(11).
For p = 89, only k = 78 yields a prime R = 302379100949042568368129 = a(12).
For p = 107 through p = 86243, no k yields a prime R.
For p = 107 through p = 3021377, no k yields a prime R. - _Robert Price_, Sep 04 2019
Cf.
A258882 (PWN of the form 2^k*p*q).
Cf.
A320875 for a more general pattern leading to more and larger PWN.
-
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
43112609};
lst = {};
For[i = 1, i <= Length[A000043], i++,
p = A000043[[i]];
For[k = 1, k < p, k++,
r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
If[! IntegerQ[r], Continue[]];
If[PrimeQ[r], AppendTo[lst, r]]]];
Union[lst] (* Robert Price, Sep 04 2019 *)
A242999
Mersenne prime exponents p in A000043 such that R=2^k-1+(2^k-2)/(2^(p-k)-1) is prime for some k < p, listed with multiplicity (number of k's), see A243003 for the k-values.
Original entry on oeis.org
3, 5, 7, 7, 13, 17, 19, 19, 31, 31, 61, 89
Offset: 1
For given p = A000043(n), the following k's yield a prime R:
p : k's
2 : -
3 : 2
5 : 4
7 : 4, 5
13 : 11
17 : 13
19 : 16, 17
31 : 16, 29
61 : 57
89 : 78
107 through 86243 : none.
107 through 3021377: none. - _Robert Price_, Sep 04 2019
Thus the pairs (p,k) are (3,2), (5,4), (7,4), (7,5), (13,11), ... and the present sequence lists the first component of these pairs, sequence A243003 lists the second component.
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
-
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
43112609};
lst = {};
For[i = 1, i <= 10, i++,
p = A000043[[i]];
For[k = 1, k < p, k++,
r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
If[! IntegerQ[r], Continue[]];
If[PrimeQ[r], AppendTo[lst, p]]]];
lst (* Robert Price, Sep 04 2019 *)
-
forprime(p=1,,ispseudoprime(2^p-1)||next;for(k=p\2+1,p-1,(k-1)%(p-k)==0 && isprime(2^k-1+(2^k-2)/(2^(p-k)-1))&&print1(p","))) \\ M. F. Hasler, Jul 19 2016
A243003
Pairs (p,k) such that p is in A000043 and R=2^k-1+(2^k-2)/(2^(p-k)-1) is prime: this sequence lists the k-values, see A242999 for the p-values. (Ordered by p, then k.)
Original entry on oeis.org
2, 4, 4, 5, 11, 13, 16, 17, 16, 29, 57, 78
Offset: 1
For given p=A000043(n), the following k's yield a prime R:
p : k's
2 : -
3 : 2
5 : 4
7 : 4, 5
13 : 11
17 : 13
19 : 16, 17
31 : 16, 29
61 : 57
89 : 78
107 through 86243 : none.
107 through 3021377: none. - _Robert Price_, Sep 04 2019
Thus the pairs (p,k) are (3,2), (5,4), (7,4), (7,5), (13,11), ... and the present sequence lists the second component of these pairs, the first components are listed in A242999.
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Cf.
A258882 (PWN of the form 2^k*p*q).
-
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
43112609};
lst = {};
For[i = 1, i <= 10, i++,
p = A000043[[i]];
For[k = 1, k < p, k++,
r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
If[! IntegerQ[r], Continue[]];
If[PrimeQ[r], AppendTo[lst, k]]]];
lst (* Robert Price, Sep 04 2019 *)
-
forprime(p=1,, ispseudoprime(2^p-1)||next; for(k=p\2+1, p-1, (k-1)%(p-k)==0 && isprime(2^k-1+(2^k-2)/(2^(p-k)-1))&&print1(k", "))) \\ M. F. Hasler, Jul 19 2016
A262228
Deficiency sequence: a(0) = 1, a(n) is the smallest prime p > a(n-1) such that the product of a(i), 1 <= i < n, is deficient (belongs to A005100).
Original entry on oeis.org
1, 2, 5, 11, 59, 653, 84761, 2763189059, 377406001499268899, 2638619515495963542360422694651593, 135435890329895562961039215198033899386421965445591860752412324961
Offset: 0
a(3) = 11 because A001065(2*5*7) = A001065(70) = 74 > 70, and A001065(2*5*11) = A001065(110) = 106 < 110.
From _M. F. Hasler_, Dec 14 2017: (Start)
Let Q(x) = 1/(2x/sigma(x) - 1), P(n) = Product( a(k), k<n): P(0) = 1 (empty product). Then:
Q(P(0)) = 1, a(0) = nextprime(1) = 2 = P(1).
Q(P(1)) = 3, a(1) = 5. (2*3 is perfect, P(2) = 2*5 is deficient.)
Q(P(2)) = 9, a(2) = 11. (2*5*7 is weird, P(3) = 2*5*11 is deficient.)
Q(P(3)) = 54, a(3) = 59. (P(3)*53 is weird, P(4) = 2*5*11*59 is deficient.)
Q(P(4)) = 648, a(4) = 653. (P(4)*647 is weird, P(5) = 2*5*11*59*653 is deficient.)
Q(P(5)) = 84758.4, a(5) = 84761. (P(5)*84751 is abundant and semiperfect: sum of all proper divisors except {1, 2, 11, 22, 55, 59, 590}; P(6) = 2*5*11*59*653*84761 is deficient.) (End)
-
a[0]=1; a[n_] := a[n] = NextPrime[1/(2*Product[a[i],{i,1,n-1}]/Product[a[i]+1,{i,1,n-1}]-1)]; Array[a, 11, 0] (* Amiram Eldar, Jun 10 2019 *)
-
lista(nn) = {print1(p=1, ", "); vp = [p]; for (n=2, nn, np = nextprime(1+floor(1/(2*prod(i=2, n-1, vp[i]/(vp[i]+1))-1))); vp = concat(vp, np); print1(np, ", "););} \\ Michel Marcus, Oct 16 2015
-
a=List(); m=1; for(n=0, 13, listput(a, p=nextprime(1\(2/sigma(m,-1)-1)+1)); p>default(primelimit)&&addprimes(p); m*=p); a \\ M. F. Hasler, Dec 14 2017
A242993
Least k such that R = (2^k*Q-Q-1)/(Q+1-2^k) is prime, where Q = A000668(n) is the n-th Mersenne prime, or 0 if no such k exists.
Original entry on oeis.org
0, 2, 4, 4, 11, 13, 16, 16, 57, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
For n = 2, Q = A000668(2) = 7, k = 2 yields the prime R = (2^k*Q-Q-1)/(Q+1-2^k) = 20/4 = 5 and the (smallest possible) weird number 2^(k-1)*Q*R = 2*7*5 = 70.
For n = 9, Q = A000668(9) = 2^61-1, k = 57 yields the prime R = 2^57-1 + (2^57-2)/(2^4-1) and the 53-digit primitive weird number 2^56*Q*R = 25541592347764814106588251084767772206406532903993344.
For n = 10, Q = A000668(10) = 2^89-1, k = 78 yields the prime R = 2^78-1 + (2^78-2)/(2^11-1) and the 74-digit primitive weird number 2^77*Q*R = 28283363272427014026275183563912621451964887156507346985599492888375328768.
- S. Kravitz, A search for large weird numbers. J. Recreational Math. 9(1976), 82-85 (1977). Zbl 0365.10003
Cf.
A258882 (weird numbers of the form 2^k*p*q).
-
A000043 = {2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607,
1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,
21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433,
1257787, 1398269, 2976221, 3021377, 6972593, 13466917, 20996011,
24036583, 25964951, 30402457, 32582657, 37156667, 42643801,
43112609};
lst = {};
For[i = 1, i <= 25, i++,
p = A000043[[i]];
kc = 0;
For[k = 1, k < p, k++,
r = 2^k - 1 + (2^k - 2)/(2^(p - k) - 1);
If[! IntegerQ[r], Continue[]];
If[PrimeQ[r], kc = k; Break[]]];
AppendTo[lst, kc]];
lst (* Robert Price, Sep 05 2019 *)
-
a(n)={p=A000043[n]; for(k=p\2+1,p-1, Mod(2,2^(p-k)-1)^k==2 && ispseudoprime(2^k-1+(2^k-2)/(2^(p-k)-1)) && return(k))}
A295369
Number of squarefree primitive abundant numbers (A071395) with n prime factors.
Original entry on oeis.org
0, 0, 1, 18, 610, 216054, 12566567699
Offset: 1
For n=3, the only squarefree primitive abundant number (SFPAN) is 2*5*7 = 70, which is also a primitive weird number, see A002975.
For n=4, the 18 SFPAN range from 2*5*11*13 = 1430 to 2*5*11*53 = 5830.
For n=5, the 610 SFPAN range from 3*5*7*11*13 = 15015 to 2*5*11*59*647 = 4199030.
-
A295369(n, p=1, m=1, sigmam=1) = {
my(centerm = sigmam/(2*m-sigmam), s=0);
if (n==1,
if (centerm > p, primepi(ceil(centerm)-1) - primepi(p), 0),
p = max(floor(centerm),p); while (0A295369(n-1, p=nextprime(p+1), m*p, sigmam*(p+1)), s+=c); s
)
}
-
def A295369(n, p=1, m=1, sigmam=1):
centerm = sigmam/(2*m-sigmam)
if n==1:
return prime_pi(ceil(centerm)-1) - prime_pi(p) if centerm > p else 0
else:
p = max(floor(centerm), p)
s = 0
while True:
p = next_prime(p)
c = A295369(n-1, p, m*p, sigmam*(p+1))
if c <= 0: return s
s+=c
Comments