cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 507 results. Next

A167606 Number of compositions of n where each pair of adjacent parts is relatively prime.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 25, 48, 90, 168, 316, 594, 1116, 2096, 3935, 7388, 13877, 26061, 48944, 91919, 172623, 324188, 608827, 1143390, 2147309, 4032677, 7573426, 14223008, 26711028, 50163722, 94208254, 176924559, 332267039, 624002605, 1171886500, 2200820905
Offset: 0

Views

Author

Keywords

Examples

			For n = 4, there are 8 compositions: [4], [3,1], [2,2], [2,1,1], [1,3], [1,2,1], [1,1,2], and [1,1,1,1]. Of these, only [2,2] has adjacent terms that are not relatively prime, so a(4) = 7.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(`if`(igcd(i, j)=1, b(n-j, j), 0), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 27 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[If[GCD[i, j]==1, b[n-j, j], 0], {j, n}]];
    a[n_] := b[n, 1];
    a /@ Range[0, 40] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *)
  • PARI
    am(n)={local(r);r=matrix(n,n);
    for(k=1,n,
    for(i=1,k-1,r[k,i]=sum(j=1,k-i,if(gcd(i,j)==1,r[k-i,j],0)));r[k,k]=1);
    r}
    al(n)=local(m);m=am(n);vector(n,k,sum(i=1,k,m[k,i]))
    a(left,last=1)={local(r);if(left==0,return(1));
    for(k=1,left,if(gcd(k,last)==1,r+=a(left-k,k)));r}

Formula

a(n) ~ c * d^n, where d=1.8780154065731862176678940156530410192010138618103068156064519919669849911..., c=0.5795813856338135589080831265343299561832275012313700387790334792220408848... - Vaclav Kotesovec, May 01 2014

A345192 Number of non-alternating compositions of n.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 20, 45, 99, 208, 437, 906, 1862, 3803, 7732, 15659, 31629, 63747, 128258, 257722, 517339, 1037652, 2079984, 4167325, 8346204, 16710572, 33449695, 66944254, 133959021, 268028868, 536231903, 1072737537, 2145905285, 4292486690, 8586035993, 17173742032, 34350108745, 68704342523, 137415168084
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

First differs from A261983 at a(6) = 20, A261983(6) = 18.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(2) = 1 through a(6) = 20 compositions:
  (11)  (111)  (22)    (113)    (33)
               (112)   (122)    (114)
               (211)   (221)    (123)
               (1111)  (311)    (222)
                       (1112)   (321)
                       (1121)   (411)
                       (1211)   (1113)
                       (2111)   (1122)
                       (11111)  (1131)
                                (1221)
                                (1311)
                                (2112)
                                (2211)
                                (3111)
                                (11112)
                                (11121)
                                (11211)
                                (12111)
                                (21111)
                                (111111)
		

Crossrefs

The complement is counted by A025047 (ascend: A025048, descend: A025049).
Dominates A261983 (non-anti-run compositions), ranked by A348612.
These compositions are ranked by A345168, complement A345167.
The case without twins is A348377.
The version for factorizations is A348613.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A011782 counts compositions.
A032020 counts strict compositions.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A274174 counts compositions with equal parts contiguous.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A344654 counts non-twin partitions with no alternating permutation.
A345162 counts normal partitions with no alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions w/ alternating permutation, ranked by A345172.
A345165 counts partitions w/o alternating permutation, ranked by A345171.
Patterns:
- A128761 avoiding (1,2,3) adjacent.
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!wigQ[#]&]],{n,0,15}]

Formula

a(n) = A011782(n) - A025047(n).

A345170 Number of integer partitions of n with an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 10, 14, 19, 25, 36, 48, 64, 84, 111, 146, 191, 244, 315, 404, 515, 651, 823, 1035, 1295, 1616, 2011, 2492, 3076, 3787, 4650, 5695, 6952, 8463, 10280, 12460, 15059, 18162, 21858, 26254, 31463, 37641, 44933, 53554, 63704, 75653, 89683, 106162, 125445, 148020
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

First differs from A325534 at a(10) = 25, A325534(10) = 26. The first separable partition without an alternating permutation is (3,2,2,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)      (8)
            (21)  (31)   (32)   (42)    (43)     (53)
                  (211)  (41)   (51)    (52)     (62)
                         (221)  (321)   (61)     (71)
                         (311)  (411)   (322)    (332)
                                (2211)  (331)    (422)
                                        (421)    (431)
                                        (511)    (521)
                                        (3211)   (611)
                                        (22111)  (3221)
                                                 (3311)
                                                 (4211)
                                                 (22211)
                                                 (32111)
		

Crossrefs

Includes all strict partitions A000009.
Including twins (x,x) gives A344740.
The normal case is A345163 (complement: A345162).
The complement is counted by A345165, ranked by A345171.
The Heinz numbers of these partitions are A345172.
The version for factorizations is A348379.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],wigQ]!={}&]],{n,0,15}]

Extensions

a(26)-a(32) from Robert Price, Jun 23 2021
a(33)-a(48) from Alois P. Heinz, Jun 23 2021
a(49) onwards from Joseph Likar, Sep 05 2023

A344606 Number of alternating permutations of the prime factors of n, counting multiplicity, including twins (x,x).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 0, 1, 1, 4, 1, 0, 2, 2, 2, 2, 1, 2, 2, 0, 1, 4, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 4, 1, 2, 1, 0, 2, 4, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 2, 4, 1, 0, 0, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 28 2021

Keywords

Comments

Differs from A335448 in having a(x^2) = 0 and a(270) = 0.
These are permutations of the prime factors of n, counting multiplicity, with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins (x,x) is A345164, which is identical to this sequence except when n is the square of a prime.

Examples

			The permutations for n = 2, 6, 30, 180, 210, 300, 420, 720, 840:
  2   23   253   23253   2537   25253   23275   2323252   232527
      32   325   32325   2735   25352   25273   2325232   232725
           352   32523   3275   32525   25372   2523232   252327
           523   35232   3527   35252   27253             252723
                 52323   3725   52325   27352             272325
                         5273   52523   32527             272523
                         5372           32725             325272
                         5723           35272             327252
                         7253           37252             523272
                         7352           52327             527232
                                        52723             723252
                                        57232             725232
                                        72325
                                        72523
For example, there are no alternating permutations of the prime factors of 270 because the only anti-runs are {3,2,3,5,3} and {3,5,3,2,3}, neither of which is alternating, so a(270) = 0.
		

Crossrefs

The version for permutations is A001250.
The extension to anti-run permutations is A335452.
The version for compositions is A344604.
The version for patterns is A344605.
Positions of zeros are A344653 (counted by A344654).
Not including twins (x,x) gives A345164.
A008480 counts permutations of prime indices (strict: A335489, rank: A333221).
A056239 adds up prime indices, row sums of A112798.
A071321 and A071322 are signed sums of prime factors.
A316523 is a signed sum of prime multiplicities.
A316524 and A344616 are signed sums of prime indices.
A325534 counts separable partitions (ranked by A335433).
A325535 counts inseparable partitions (ranked by A335448).
A344740 counts partitions with an alternating permutation or twin (x,x).

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,100}]

A353847 Composition run-sum transformation in terms of standard composition numbers. The a(k)-th composition in standard order is the sequence of run-sums of the k-th composition in standard order. Takes each index of a row of A066099 to the index of the row consisting of its run-sums.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 10, 12, 13, 10, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 26, 20, 21, 18, 16, 32, 33, 34, 34, 32, 37, 38, 36, 40, 41, 32, 34, 44, 45, 42, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 42, 36, 37, 34, 32, 64, 65, 66, 66
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			As a triangle:
   0
   1
   2  2
   4  5  6  4
   8  9  8 10 12 13 10  8
  16 17 18 18 20 17 22 20 24 25 24 26 20 21 18 16
These are the standard composition numbers of the following compositions (transposed):
  ()  (1)  (2)  (3)    (4)      (5)
           (2)  (2,1)  (3,1)    (4,1)
                (1,2)  (4)      (3,2)
                (3)    (2,2)    (3,2)
                       (1,3)    (2,3)
                       (1,2,1)  (4,1)
                       (2,2)    (2,1,2)
                       (4)      (2,3)
                                (1,4)
                                (1,3,1)
                                (1,4)
                                (1,2,2)
                                (2,3)
                                (2,2,1)
                                (3,2)
                                (5)
		

Crossrefs

Standard compositions are listed by A066099.
The version for partitions is A353832.
The run-sums themselves are listed by A353932, with A353849 distinct terms.
A005811 counts runs in binary expansion.
A300273 ranks collapsible partitions, counted by A275870.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353860 counts collapsible compositions.
A353863 counts run-sum-complete partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[Total/@Split[stc[n]]],{n,0,100}]

A114901 Number of compositions of n such that each part is adjacent to an equal part.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 5, 3, 10, 10, 21, 22, 49, 51, 105, 126, 233, 292, 529, 678, 1181, 1585, 2654, 3654, 6016, 8416, 13606, 19395, 30840, 44517, 70087, 102070, 159304, 233941, 362429, 535520, 825358, 1225117, 1880220, 2801749, 4285086, 6404354, 9769782, 14634907
Offset: 0

Views

Author

Christian G. Bower, Jan 05 2006

Keywords

Examples

			The 5 compositions of 6 are 3+3, 2+2+2, 2+2+1+1, 1+1+2+2, 1+1+1+1+1+1.
From _Gus Wiseman_, Nov 25 2019: (Start)
The a(2) = 1 through a(9) = 10 compositions:
  (11)  (111)  (22)    (11111)  (33)      (11122)    (44)        (333)
               (1111)           (222)     (22111)    (1133)      (11133)
                                (1122)    (1111111)  (2222)      (33111)
                                (2211)               (3311)      (111222)
                                (111111)             (11222)     (222111)
                                                     (22211)     (1111122)
                                                     (111122)    (1112211)
                                                     (112211)    (1122111)
                                                     (221111)    (2211111)
                                                     (11111111)  (111111111)
(End)
		

Crossrefs

The case of partitions is A007690.
Compositions with no adjacent parts equal are A003242.
Compositions with all multiplicities > 1 are A240085.
Compositions with minimum multiplicity 1 are A244164.
Compositions with at least two adjacent parts equal are A261983.

Programs

  • Maple
    g:= proc(n, i) option remember; add(b(n-i*j, i), j=2..n/i) end:
    b:= proc(n, l) option remember; `if`(n=0, 1,
          add(`if`(i=l, 0, g(n,i)), i=1..n/2))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, Nov 29 2019
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Min@@Length/@Split[#]>1&]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
    g[n_, i_] := g[n, i] = Sum[b[n - i*j, i], {j, 2, n/i}] ;
    b[n_, l_] := b[n, l] = If[n==0, 1, Sum[If[i==l, 0, g[n, i]], {i, 1, n/2}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, May 23 2021, after Alois P. Heinz *)
  • PARI
    A_x(N,k) = { my(x='x+O('x^N), g=1/(1-sum(i=1,N,sum(j=k+1,N, x^(i*j))/(1+ sum(j=k+1,N, x^(i*j)))))); Vec(g)}
    A_x(50,1) \\ John Tyler Rascoe, May 17 2024

Formula

INVERT(iMOEBIUS(iINVERT(A000012 shifted right 2 places)))
G.f.: A(x,1) is the k = 1 case of A(x,k) = 1/(1 - Sum_{i>0} ( (Sum_{j>k} x^(i*j))/(1 + Sum_{j>k} x^(i*j)) )) where A(x,k) is the g.f. for compositions of n with all run-lengths > k. - John Tyler Rascoe, May 16 2024

A025048 Number of up/down (initially ascending) compositions of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 64, 100, 158, 247, 389, 612, 960, 1509, 2372, 3727, 5858, 9207, 14468, 22738, 35737, 56164, 88268, 138726, 218024, 342652, 538524, 846358, 1330160, 2090522, 3285526, 5163632, 8115323, 12754288, 20045027, 31503382
Offset: 0

Views

Author

Keywords

Comments

Original name was: Ascending wiggly sums: number of sums adding to n in which terms alternately increase and decrease.
A composition is up/down if it is alternately strictly increasing and strictly decreasing, starting with an increase. For example, the partition (3,2,2,2,1) has no up/down permutations, even though it does have the anti-run permutation (2,3,2,1,2). - Gus Wiseman, Jan 15 2022

Examples

			From _Gus Wiseman_, Jan 15 2022: (Start)
The a(1) = 1 through a(7) = 11 up/down compositions:
  (1)  (2)  (3)    (4)      (5)      (6)        (7)
            (1,2)  (1,3)    (1,4)    (1,5)      (1,6)
                   (1,2,1)  (2,3)    (2,4)      (2,5)
                            (1,3,1)  (1,3,2)    (3,4)
                                     (1,4,1)    (1,4,2)
                                     (2,3,1)    (1,5,1)
                                     (1,2,1,2)  (2,3,2)
                                                (2,4,1)
                                                (1,2,1,3)
                                                (1,3,1,2)
                                                (1,2,1,2,1)
(End)
		

Crossrefs

The case of permutations is A000111.
The undirected version is A025047, ranked by A345167.
The down/up version is A025049, ranked by A350356.
The strict case is A129838, undirected A349054.
The weak version is A129852, down/up A129853.
The version for patterns is A350354.
These compositions are ranked by A350355.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz compositions, complement A261983.
A011782 counts compositions, unordered A000041.
A325534 counts separable partitions, complement A325535.
A345192 counts non-alternating compositions, ranked by A345168.
A345194 counts alternating patterns, complement A350252.
A349052 counts weakly alternating compositions, complement A349053.

Programs

  • Mathematica
    updoQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]>y[[m+1]],y[[m]]Gus Wiseman, Jan 15 2022 *)

Formula

a(n) = 1 + A025047(n) - A025049(n) = Sum_k A059882(n,k). - Henry Bottomley, Feb 05 2001
a(n) ~ c * d^n, where d = 1.571630806607064114100138865739690782401305155950789062725011227781640624..., c = 0.4408955566119650057730070154620695491718230084159159991449729825619... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Name and offset changed by Gus Wiseman, Jan 15 2022

A025049 Number of down/up (initially descending) compositions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 9, 14, 23, 35, 55, 87, 136, 214, 337, 528, 830, 1306, 2051, 3223, 5067, 7962, 12512, 19667, 30908, 48574, 76343, 119982, 188565, 296358, 465764, 732006, 1150447, 1808078, 2841627, 4465992, 7018891, 11031101, 17336823, 27247087, 42822355
Offset: 0

Views

Author

Keywords

Comments

Original name was: Descending wiggly sums: number of sums adding to n in which terms alternately decrease and increase.
A composition is down/up if it is alternately strictly decreasing and strictly increasing, starting with a decrease. For example, the partition (3,2,2,2,1) has no down/up permutations, even though it does have the anti-run permutation (2,1,2,3,2). - Gus Wiseman, Jan 28 2022

Examples

			From _Gus Wiseman_, Jan 28 2022: (Start)
The a(1) = 1 through a(8) = 14 down/up compositions:
  (1)  (2)  (3)    (4)    (5)      (6)        (7)        (8)
            (2,1)  (3,1)  (3,2)    (4,2)      (4,3)      (5,3)
                          (4,1)    (5,1)      (5,2)      (6,2)
                          (2,1,2)  (2,1,3)    (6,1)      (7,1)
                                   (3,1,2)    (2,1,4)    (2,1,5)
                                   (2,1,2,1)  (3,1,3)    (3,1,4)
                                              (4,1,2)    (3,2,3)
                                              (2,1,3,1)  (4,1,3)
                                              (3,1,2,1)  (5,1,2)
                                                         (2,1,3,2)
                                                         (2,1,4,1)
                                                         (3,1,3,1)
                                                         (4,1,2,1)
                                                         (2,1,2,1,2)
(End)
		

Crossrefs

The case of permutations is A000111.
The undirected version is A025047, ranked by A345167.
The up/down version is A025048, ranked by A350355.
The strict case is A129838, undirected A349054.
The weak version is A129853, up/down A129852.
The version for patterns is A350354.
These compositions are ranked by A350356.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz compositions, complement A261983.
A011782 counts compositions, unordered A000041.
A325534 counts separable partitions, complement A325535.
A345192 counts non-alternating compositions, ranked by A345168.
A345194 counts alternating patterns, complement A350252.
A349052 counts weakly alternating compositions, complement A349053.

Programs

  • Mathematica
    doupQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],doupQ]],{n,0,15}] (* Gus Wiseman, Jan 28 2022 *)

Formula

a(n) = 1 + A025047(n) - A025048(n) = Sum_{k=1..n} A059883(n,k). - Henry Bottomley, Feb 05 2001

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 20 2022
Name changed by Gus Wiseman, Jan 28 2022

A116406 Expansion of ((1 + x - 2x^2) + (1+x)*sqrt(1-4x^2))/(2(1-4x^2)).

Original entry on oeis.org

1, 1, 2, 3, 7, 11, 26, 42, 99, 163, 382, 638, 1486, 2510, 5812, 9908, 22819, 39203, 89846, 155382, 354522, 616666, 1401292, 2449868, 5546382, 9740686, 21977516, 38754732, 87167164, 154276028, 345994216, 614429672, 1374282019, 2448023843
Offset: 0

Views

Author

Paul Barry, Feb 13 2006

Keywords

Comments

Interleaving of A114121 and A032443. Row sums of A116405. Binomial transform is A116409.
Appears to be the number of n-digit binary numbers not having more zeros than ones; equivalently, the number of unrestricted Dyck paths of length n not going below the axis. - Ralf Stephan, Mar 25 2008
From Gus Wiseman, Jun 20 2021: (Start)
Also the number compositions of n with alternating sum >= 0, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. The a(0) = 1 through a(5) = 11 compositions are:
() (1) (2) (3) (4) (5)
(11) (21) (22) (32)
(111) (31) (41)
(112) (113)
(121) (122)
(211) (212)
(1111) (221)
(311)
(1121)
(2111)
(11111)
(End)
From J. Stauduhar, Jan 14 2022: (Start)
Also, for n >= 2, first differences of partial row sums of Pascal's triangle. The first ceiling(n/2)+1 elements of rows n=0 to n=4 in Pascal's triangle are:
1
1 1
1 2
1 3 3
1 4 6
...
The cumulative sums of these partial rows form the sequence 1,3,6,13,24,..., and its first differences are a(2),a(3),a(4),... in this sequence.
(End)

Crossrefs

The alternating sum = 0 case is A001700 or A088218.
The alternating sum > 0 case appears to be A027306.
The bisections are A032443 (odd) and A114121 (even).
The alternating sum <= 0 version is A058622.
The alternating sum < 0 version is A294175.
The restriction to reversed partitions is A344607.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A124754 gives the alternating sum of standard compositions.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344616 lists the alternating sums of partitions by Heinz number.

Programs

  • Mathematica
    CoefficientList[Series[((1+x-2x^2)+(1+x)Sqrt[1-4x^2])/(2(1-4x^2)),{x,0,40}],x] (* Harvey P. Dale, Aug 16 2012 *)
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],ats[#]>=0&]],{n,0,15}] (* Gus Wiseman, Jun 20 2021 *)

Formula

a(n) = A114121(n/2)*(1+(-1)^n)/2 + A032443((n-1)/2)*(1-(-1)^n)/2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-1,k). - Paul Barry, Oct 06 2007
Conjecture: n*(n-3)*a(n) +2*(-n^2+4*n-2)*a(n-1) -4*(n-2)^2*a(n-2) +8*(n-2)*(n-3)*a(n-3)=0. - R. J. Mathar, Nov 28 2014
a(n) ~ 2^(n-2) * (1 + (3+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, May 30 2016
a(n) = 2^(n-1) - A294175(n). - Gus Wiseman, Jun 27 2021

A373948 Run-compression encoded as a transformation of compositions in standard order.

Original entry on oeis.org

0, 1, 2, 1, 4, 5, 6, 1, 8, 9, 2, 5, 12, 13, 6, 1, 16, 17, 18, 9, 20, 5, 22, 5, 24, 25, 6, 13, 12, 13, 6, 1, 32, 33, 34, 17, 4, 37, 38, 9, 40, 41, 2, 5, 44, 45, 22, 5, 48, 49, 50, 25, 52, 13, 54, 13, 24, 25, 6, 13, 12, 13, 6, 1, 64, 65, 66, 33, 68, 69, 70, 17, 72
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2024

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1).
For the present sequence, the a(n)-th composition in standard order is obtained by compressing the n-th composition in standard order.

Examples

			The standard compositions and their compressions begin:
   0: ()        -->  0: ()
   1: (1)       -->  1: (1)
   2: (2)       -->  2: (2)
   3: (1,1)     -->  1: (1)
   4: (3)       -->  4: (3)
   5: (2,1)     -->  5: (2,1)
   6: (1,2)     -->  6: (1,2)
   7: (1,1,1)   -->  1: (1)
   8: (4)       -->  8: (4)
   9: (3,1)     -->  9: (3,1)
  10: (2,2)     -->  2: (2)
  11: (2,1,1)   -->  5: (2,1)
  12: (1,3)     --> 12: (1,3)
  13: (1,2,1)   --> 13: (1,2,1)
  14: (1,1,2)   -->  6: (1,2)
  15: (1,1,1,1) -->  1: (1)
		

Crossrefs

Positions of 1's are A000225.
The image is A333489, counted by A003242.
Sum of standard composition for a(n) is given by A373953, length A124767.
A037201 gives compression of first differences of primes, halved A373947.
A066099 lists the parts of all compositions in standard order.
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by length A116608.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373949 counts compositions by compressed sum, opposite A373951.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    Table[stcinv[First/@Split[stc[n]]],{n,0,30}]

Formula

A029837(a(n)) = A373953(n).
A000120(a(n)) = A124767(n).
Previous Showing 31-40 of 507 results. Next