cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A025614 Numbers of form 3^i*6^j, with i, j >= 0.

Original entry on oeis.org

1, 3, 6, 9, 18, 27, 36, 54, 81, 108, 162, 216, 243, 324, 486, 648, 729, 972, 1296, 1458, 1944, 2187, 2916, 3888, 4374, 5832, 6561, 7776, 8748, 11664, 13122, 17496, 19683, 23328, 26244, 34992, 39366, 46656, 52488, 59049, 69984, 78732, 104976, 118098
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    n = 10^6; Flatten[Table[3^i*6^j, {i, 0, Log[3, n]}, {j, 0, Log[6, n/3^i]}]] // Sort (* Amiram Eldar, Sep 26 2020 *)

Formula

Sum_{n>=1} 1/a(n) = (3*6)/((3-1)*(6-1)) = 9/5. - Amiram Eldar, Sep 26 2020
a(n) ~ exp(sqrt(2*log(3)*log(6)*n)) / sqrt(18). - Vaclav Kotesovec, Sep 26 2020
a(n) = 3^A025641(n) *6^A025657(n). - R. J. Mathar, Jul 06 2025

A025624 Numbers of form 5^i*9^j, with i, j >= 0.

Original entry on oeis.org

1, 5, 9, 25, 45, 81, 125, 225, 405, 625, 729, 1125, 2025, 3125, 3645, 5625, 6561, 10125, 15625, 18225, 28125, 32805, 50625, 59049, 78125, 91125, 140625, 164025, 253125, 295245, 390625, 455625, 531441, 703125, 820125, 1265625, 1476225, 1953125
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003593.

Programs

  • Mathematica
    f[upto_]:=Module[{maxi=Ceiling[Log[5,upto]],maxj=Ceiling[Log[9,upto]],s}, s=Union[Flatten[Outer[Times,5^Range[0,maxi], 9^Range[0,maxj]]]]; Select[s,#<=upto&]]; f[2000000] (* Harvey P. Dale, Mar 27 2011 *)

Formula

Sum_{n>=1} 1/a(n) = (5*9)/((5-1)*(9-1)) = 45/32. - Amiram Eldar, Sep 24 2020
a(n) ~ exp(sqrt(2*log(5)*log(9)*n)) / sqrt(45). - Vaclav Kotesovec, Sep 24 2020
a(n) = 5^A025654(n) * 9^A025679(n). - R. J. Mathar, Jul 06 2025

A112753 Number of distinct prime factors of n-th number of the form 3^i*5^j.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=120},Take[PrimeNu/@Union[Flatten[{3^#[[1]] 5^#[[2]],5^#[[1]] 3^#[[2]]}&/@Tuples[Range[0,nn],2]]],nn]] (* Harvey P. Dale, Nov 29 2013 *)

Formula

a(n) = A001221(A003593(n)) = 2 - 0^A022336(n) + 0^A022337(n);
a(n) <= 2.

A112756 Greatest prime factor of n-th number of the form 3^i*5^j.

Original entry on oeis.org

1, 3, 5, 3, 5, 5, 3, 5, 5, 3, 5, 5, 5, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 3], {k, 0, m}]; FactorInteger[#][[-1, 1]] & /@ Union[s]  (* Amiram Eldar, Feb 07 2020 *)

Formula

a(n) = A006530(A003593(n));
A112755(n) <= a(n) <= 5.

A258023 Numbers of form (2^i)*(3^j) or (3^i)*(5^j).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 12, 15, 16, 18, 24, 25, 27, 32, 36, 45, 48, 54, 64, 72, 75, 81, 96, 108, 125, 128, 135, 144, 162, 192, 216, 225, 243, 256, 288, 324, 375, 384, 405, 432, 486, 512, 576, 625, 648, 675, 729, 768, 864, 972, 1024, 1125, 1152, 1215, 1296
Offset: 1

Views

Author

Reinhard Zumkeller, May 16 2015

Keywords

Comments

Union of A003586 and A003593;
A006530(a(n)) <= 5; A001221(a(n)) <= 2; a(n) mod 10 != 0.

Examples

			.   n |  a(n) |                 n |  a(n) |
. ----+-------+----------     ----+-------+------------
.   1 |    1  |  1             16 |   32  |  2^5
.   2 |    2  |  2             17 |   36  |  2^2 * 3^2
.   3 |    3  |  3             18 |   45  |  3^2 * 5
.   4 |    4  |  2^2           19 |   48  |  2^4 * 3
.   5 |    5  |  5             20 |   54  |  2 * 3^3
.   6 |    6  |  2 * 3         21 |   64  |  2^6
.   7 |    8  |  2^3           22 |   72  |  2^3 * 3^2
.   8 |    9  |  3^2           23 |   75  |  3 * 5^2
.   9 |   12  |  2^2 * 3       24 |   81  |  3^4
.  10 |   15  |  3 * 5         25 |   96  |  2^5 * 3
.  11 |   16  |  2^4           26 |  108  |  2^2 * 3^3
.  12 |   18  |  2 * 3^2       27 |  125  |  5^3
.  13 |   24  |  2^3 * 3       28 |  128  |  2^7
.  14 |   25  |  5^2           29 |  135  |  3^3 * 5
.  15 |   27  |  3^3           30 |  144  |  2^4 * 3^2
		

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (union)
    a258023 n = a258023_list !! (n-1)
    a258023_list = union a003586_list a003593_list
  • Mathematica
    n = 10^4; Join[Table[2^i*3^j, {i, 0, Log[2, n]}, {j, 0, Log[3, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}]] // Flatten // Union (* Amiram Eldar, Sep 23 2020 *)

Formula

a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n / log(10))) / sqrt(3). - Vaclav Kotesovec, Sep 22 2020
Sum_{n>=1} 1/a(n) = 27/8. - Amiram Eldar, Sep 23 2020

A337801 Numbers of the form (2^i)*(5^j) or (3^i)*(5^j).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 15, 16, 20, 25, 27, 32, 40, 45, 50, 64, 75, 80, 81, 100, 125, 128, 135, 160, 200, 225, 243, 250, 256, 320, 375, 400, 405, 500, 512, 625, 640, 675, 729, 800, 1000, 1024, 1125, 1215, 1250, 1280, 1600, 1875, 2000, 2025, 2048, 2187, 2500
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2020

Keywords

Comments

Union of A003592 and A003593.

Crossrefs

Programs

  • Mathematica
    n = 10^4; Join[Table[2^i*5^j, {i, 0, Log[2, n]}, {j, 0, Log[5, n/2^i]}], Table[3^i*5^j, {i, 0, Log[3, n]}, {j, 0, Log[5, n/3^i]}]] // Flatten // Union (* Amiram Eldar, Sep 23 2020 *)

Formula

a(n) ~ exp(sqrt(2*log(2)*log(3)*log(5)*n / log(6))) / sqrt(5).
Sum_{n>=1} 1/a(n) = 25/8. - Amiram Eldar, Sep 23 2020

A369417 Powerful numbers k with multiple distinct prime factors such that rad(k) is not a primorial, where rad(k) = A007947(k).

Original entry on oeis.org

100, 196, 200, 225, 392, 400, 441, 484, 500, 675, 676, 784, 800, 968, 1000, 1089, 1125, 1156, 1225, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1764, 1936, 2000, 2025, 2116, 2312, 2500, 2601, 2704, 2744, 2888, 3025, 3087, 3136, 3200, 3249, 3267, 3364, 3375, 3528
Offset: 1

Views

Author

Michael De Vlieger, Jan 22 2024

Keywords

Comments

Numbers k such that Omega(k) > omega(k) > 1, where all prime power factors p^m have exponents m > 1, such that squarefree kernel rad(k) not in A002110, where Omega = A001222 and omega = A001221.

Examples

			Let S = A366413 = {A120944 \ A002110}.
This sequence is the union of the following infinite sets:
S(1)^2 * A003592 = 10^2 * A003592 = {100, 200, 400, 500, 800, 1000, ...}
                 = { m*S(1)^2 : rad(m) | S(1) }.
S(2)^2 * A003591 = 14^2 * A003591 = {196, 392, 784, 1372, 1568, ...}
                 = { m*S(2)^2 : rad(m) | S(2) }.
S(3)^2 * A003593 = 15^2 * A003593 = {225, 675, 1125, 2025, 3375, ...}
                 = { m*S(3)^2 : rad(m) | S(3) }, etc.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 2^14},
      Select[
        Select[
          Rest@ Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}],
        Not@*PrimePowerQ],
      Nand[EvenQ[#],
        Union@ Differences@ PrimePi[FactorInteger[#][[All, 1]]] == {1}] &] ]

Formula

{a(n)} = { A286708 \ A055932 }.
{a(n)} = { m*s^2 : Omega(s) = omega(s) > 1, s not in A002110, rad(m) | s }.
A286708 is the union of A369374 and this sequence.

A112751 Number of numbers of the form 3^i*5^j that are less than or equal to n.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Magma
    [&+[MoebiusMu(15*k)*Floor(n/k):k in [1..n]]: n in [1..97]]; // Marius A. Burtea, Jul 30 2019
  • Maple
    with(numtheory): seq(add(mobius(15*k)*floor(n/k), k=1..n), n=1..90); # Ridouane Oudra, Jul 29 2019
  • Mathematica
    Accumulate[Table[Boole[n == Times @@ ({3, 5}^IntegerExponent[n, {3, 5}])], {n, 1, 100}]] (* Amiram Eldar, May 04 2025 *)

Formula

From Ridouane Oudra, Jul 29 2019: (Start)
a(n) = Card_{ k | A003593(k) <= n }.
a(n) = Sum_{k=1..n} mu(15*k)*floor(n/k), where mu is the Möbius function (A008683).
a(n) = Sum_{k=1..n} (floor(15^k/k)-floor((15^k-1)/k)). (End)
From Ridouane Oudra, Jul 17 2020: (Start)
a(n) = Sum_{i=0..floor(log_5(n))} (floor(log_3(n/5^i)) + 1).
a(n) = Sum_{i=0..floor(log_3(n))} (floor(log_5(n/3^i)) + 1). (End)

A112755 Smallest prime factor of n-th number of the form 3^i*5^j.

Original entry on oeis.org

1, 3, 5, 3, 3, 5, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 18 2005

Keywords

Crossrefs

Programs

  • Mathematica
    s = {}; m = 12; Do[n = 5^k; While[n <= 5^m, AppendTo[s, n]; n *= 3], {k, 0, m}]; FactorInteger[#][[1, 1]] & /@ Union[s] (* Amiram Eldar, Feb 07 2020 *)

Formula

a(n) = A020639(A003593(n));
a(n) <= A112756(n) <= 5.

A264997 Number of partitions of n into distinct parts of the form 3^a*5^b.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 1, 2, 2, 1, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 2, 3, 2, 3, 3, 2, 4, 3, 1, 3, 3, 3, 3, 3, 3, 4, 4, 2, 4, 3, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 3, 4, 2, 3, 4, 2, 5, 5, 3, 4, 4, 4, 5, 4, 2, 6, 6, 3, 5
Offset: 0

Views

Author

Joseph Myers, Nov 29 2015

Keywords

Examples

			28 = 27 + 1 = 25 + 3 = 15 + 9 + 3 + 1, so a(28) = 3.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, list, integral)
    a264997 n = a264997_list !! (n-1)
    a264997_list = f 0 [] a003593_list where
       f u vs ws'@(w:ws) | u < w = (p' vs u) : f (u + 1) vs ws'
                         | otherwise = f u (vs ++ [w]) ws
       p' = memo2 (list integral) integral p
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m = if m < k then 0 else p' ks (m - k) + p' ks m
    -- Reinhard Zumkeller, Dec 18 2015
  • Mathematica
    nmax = 100; A003593 = Select[Range[nmax], PowerMod[15, #, #] == 0 &]; CoefficientList[Series[Product[(1 + x^(A003593[[k]])), {k, 1, Length[A003593]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 01 2015 *)

Formula

G.f.: (1+x)(1+x^3)(1+x^5)(1+x^9)(1+x^15)....
Previous Showing 21-30 of 44 results. Next