cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A340539 a(n) is the least prime that is the concatenation of two n-digit primes, and such that the concatenation of the same primes in the other order is also prime or 0 if no such prime exists.

Original entry on oeis.org

37, 1123, 101107, 10091789, 1000710709, 100003100363, 10000031000303, 1000001910002521, 100000007100010321, 10000000071000000349, 1000000001910000000799, 100000000003100000009939, 10000000000391000000012387, 1000000000003710000000034573, 100000000000031100000000014113
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 10 2021

Keywords

Comments

Conjecture: a(n) > 0 and for n > 1 the first n digits of a(n) = A003617(n). - Chai Wah Wu, Jan 13 2021

Examples

			For n=4, 1009, 1789, 10091789 and 17891009 are all prime.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local P,a,b;
      a:= prevprime(10^(d-1));
      do
        a:= nextprime(a);
        if a > 10^d then return FAIL fi;
        b:= prevprime(10^(d-1));
        do
          b:= nextprime(b);
          if b > 10^d then break fi;
          if isprime(10^d*a+b) and isprime(10^d*b+a) then return 10^d*a+b fi;
      od od:
      FAIL
    end proc:
    f(1):= 37:
    map(f, [$1..20]);

A379140 Numbers k such that the greatest prime < 10^k and the least prime > 10^k share no decimal digits.

Original entry on oeis.org

1, 2, 8, 11, 15, 16, 17, 18, 21, 25, 26, 30, 40, 44, 46, 47, 50, 51, 53, 55, 60, 63, 64, 74, 77, 81, 86, 88, 89, 93, 95, 101, 123, 130, 131, 133, 134, 140, 152, 154, 158, 161, 164, 166, 176, 181, 189, 192, 198, 209, 214, 215, 233, 245, 264, 268, 274, 291, 293, 295, 297, 324, 326, 334, 352, 357
Offset: 1

Views

Author

Robert Israel, Dec 16 2024

Keywords

Comments

Charles R Greathouse IV conjectures that A107801(n) = prime(n) for n sufficiently large (and similarly for other related sequences). If that is the case, this sequence must be finite.

Examples

			a(3) = 8 is a term because the greatest prime < 10^8 and the least prime > 10^8 are 99999989 and 100000007 respectively, and these have no digits in common.
5 is not a term because the greatest prime < 10^5 and the least prime > 10^5 are 99991 and 100003 respectively, and these have digit 1 in common.
		

Crossrefs

Programs

  • Maple
    filter:= t -> convert(convert(prevprime(10^t),base,10),set) intersect convert(convert(nextprime(10^t),base,10),set) = {}:
    select(filter, [$1..400]);

A038694 Smallest odd number with n prime factors all of different number of decimal digits.

Original entry on oeis.org

3, 33, 3333, 3362997, 33653510979, 3365452058432937, 3365462154789112298811, 33654685491672063981243677409, 3365468784750004839828815609605741863, 3365468808308286333078849488407451130240193041, 33654688147026770688645935212572651582143501884563667779
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A003617.

Programs

  • PARI
    for(n=0,10,print1(3*prod(k=1,n,nextprime(10^k)),", ")) \\ Hugo Pfoertner, Sep 23 2020

Extensions

Title changed and a(11) from Hugo Pfoertner, Sep 23 2020

A046445 Smallest composite with n prime factors that are distinct in length.

Original entry on oeis.org

1, 22, 2222, 2241998, 22435673986, 2243634705621958, 2243641436526074865874, 22436456994448042654162451606, 2243645856500003226552543739737161242, 2243645872205524222052566325604967420160128694
Offset: 0

Views

Author

Patrick De Geest, Jul 15 1998

Keywords

Crossrefs

Cf. A003617, A033873. Initial terms of A046442, A046443, A046444.

Programs

  • Mathematica
    p = 2; Join[{1}, Table[p = p*Prime[PrimePi[10^n] + 1], {n, 9}]] (* Jayanta Basu, Jun 24 2013 *)

Extensions

Corrected by Jayanta Basu, Jun 24 2013

A078728 a(n) is the smallest m such that m < 10^n, 10^n + m is prime and if the natural number k is such that 1 < k < 10 and 3 doesn't divide k*10^n + m then k*10^n+m is prime.

Original entry on oeis.org

3, 57, 297, 177, 237, 25111, 231339, 67419, 273817, 345111, 2001753, 912277, 5236153, 9228627, 10599391, 2835261, 60120003, 14054037, 27923629, 41783347, 24590943, 112161513, 230484021, 11446969, 205242589, 583389307, 873650007
Offset: 1

Views

Author

Farideh Firoozbakht, Dec 26 2003

Keywords

Comments

a(n) is the smallest m such that m < 10^n and all six numbers 10^n + m, (Mod[m, 3]+2)*10^n + m, 4*10^n + m, (Mod[m, 3]+5)*10^n + m, 7*10^n + m & (Mod[m, 3]+8)*10^n + m are primes.
Carlos Rivera in Puzzle 245 of www.primepuzzles.net wrote "if the Faride's results ( a(n) for n=1,...,24 ) are plotted in Excel and a trend 'potential' function is asked, we obtain that a(n) is approximately equal to 0.5*n^6; this means that for n=999 a(n)=5*10^17, approximately." Since 10^n+a(n) is prime, for each n a(n)=0 (mod 3) or a(n)=1 (mod 3).

Examples

			a(6)=25111 because all the six numbers 1025111, 3025111, 4025111, 6025111, 7025111, 9025111 are primes and 25111 is the smallest number with this property.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (For[m=1, !PrimeQ[10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+2)10^n+2m-1]||! PrimeQ[4*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+5)10^n+2m-1]||!PrimeQ [7*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+8)10^n+2m-1], m++ ];2m-1); Do[Print[a[n]], {n, 32}]

Formula

a[n_] := (For[m=1, !PrimeQ[10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+2)10^n+2m-1]||! PrimeQ[4*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+5)10^n+2m-1]||!PrimeQ [7*10^n+2m-1]||!PrimeQ[(Mod[2m-1, 3]+8)10^n+2m-1], m++ ];2m-1)

A097515 a(n) = (largest prime < 10^n) + (smallest prime > 10^n).

Original entry on oeis.org

18, 198, 2006, 19980, 199994, 1999986, 20000010, 199999996, 1999999944, 19999999986, 199999999980, 2000000000028, 20000000000008, 200000000000004, 2000000000000026, 19999999999999998, 200000000000000000, 1999999999999999992, 20000000000000000012, 200000000000000000028
Offset: 1

Views

Author

Cino Hilliard, Aug 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[10^n,-1]+NextPrime[10^n],{n,20}] (* Harvey P. Dale, May 03 2018 *)

Formula

a(n) = A003618(n) + A003617(n+1). - Amiram Eldar, Jul 02 2024

Extensions

More terms from Amiram Eldar, Jul 02 2024

A098963 Position of the smallest n-digit prime in the decimal expansion of e.

Original entry on oeis.org

1, 201, 196, 6226, 151208, 2778287, 21544761, 46847251, 172814008, 1976183900
Offset: 1

Views

Author

Dominic C. Milioto (dmilioto(AT)sw.rr.com), Oct 22 2004 (who also used PiFast to calculate e)

Keywords

Comments

a(10) was found by Shigeru Kondo, using the program PiFast of Xavier Gourdon to calculate e.

Examples

			n...Prime...................Location.....String around value
1...2............................1.............2718281828459
2...11.........................201.............1019011573834
3...101........................196.............1952510190115
4...1009......................6226..............424341009057
5...10007...................151208.............4361910007991
6...100003.................2778287.............8243510000312
7...1000003...............21544761...........279031000003794
8...10000019..............46847251...........299541000001984
9...100000007............172814008.......2861310000000776457
10..1000000007..........1976183900.......3649610000000077111
		

Crossrefs

A099657 a(n) is the least prime following A002277(n) repdigits.

Original entry on oeis.org

2, 5, 37, 337, 3343, 33343, 333337, 3333373, 33333347, 333333349, 3333333403, 33333333343, 333333333367, 3333333333347, 33333333333437, 333333333333389, 3333333333333343, 33333333333333391, 333333333333333391
Offset: 0

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			n=3: 33 is followed by 37.
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[3*(10^n-1)/9], {n, 0, 35}]

A099661 a(n) is the least prime following A002281(n) repdigits.

Original entry on oeis.org

2, 11, 79, 787, 7789, 77783, 777781, 7777801, 77777803, 777777799, 7777777781, 77777777827, 777777777841, 7777777777859, 77777777777837, 777777777777787, 7777777777777867, 77777777777777797, 777777777777777817
Offset: 0

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			n=6: 77 is followed by 79.
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[7*(10^n-1)/9], {n, 0, 35}]
    NextPrime/@LinearRecurrence[{11,-10},{0,7},35] (* Harvey P. Dale, Dec 12 2021 *)

A099663 a(n) is the largest prime before A002276(n).

Original entry on oeis.org

19, 211, 2221, 22193, 222199, 2222219, 22222199, 222222193, 2222222137, 22222222189, 222222222169, 2222222222197, 22222222222201, 222222222222151, 2222222222222203, 22222222222222153, 222222222222222221, 2222222222222222177, 22222222222222222169, 222222222222222222149, 2222222222222222222161
Offset: 2

Views

Author

Labos Elemer, Nov 17 2004

Keywords

Examples

			n=2: 19 is before 22.
		

Crossrefs

Programs

  • Mathematica
    Table[NextPrime[2(10^n-1)/9, -1], {n, 2, 35}]
    Drop[NextPrime[#,-1]&/@LinearRecurrence[{11,-10},{0,2},20],2] (* Harvey P. Dale, Dec 19 2020 *)

Formula

a(n) = A007917(A002276(n)). - Michel Marcus, Jun 29 2025

Extensions

More terms from Michel Marcus, Jun 29 2025
Previous Showing 41-50 of 58 results. Next