A099667
a(n) is the largest prime before A002281(n); repdigits repeating 7.
Original entry on oeis.org
5, 73, 773, 7759, 77773, 777769, 7777769, 77777761, 777777773, 7777777741, 77777777767, 777777777773, 7777777777771, 77777777777753, 777777777777773, 7777777777777753, 77777777777777747, 777777777777777743
Offset: 1
-
Table[NextPrime[7 (10^n - 1)/9, -1], {n, 35}]
(* Second program: *)
Rest[NextPrime[#,-1]&/@LinearRecurrence[{11,-10},{0,7},25]] (* Harvey P. Dale, May 24 2015 *)
A115062
Prime nearest to 10^n. In case of a tie, choose the smaller.
Original entry on oeis.org
2, 11, 101, 997, 10007, 100003, 1000003, 9999991, 100000007, 1000000007, 10000000019, 100000000003, 999999999989, 9999999999971, 99999999999973, 999999999999989, 10000000000000061, 99999999999999997, 1000000000000000003, 9999999999999999961
Offset: 0
-
a:= n-> (t->((p, q)->`if`(q-tAlois P. Heinz, Aug 13 2014
-
Table[Min[Nearest[{NextPrime[10^n],NextPrime[10^n,-1]},10^n]],{n,0,20}] (* Harvey P. Dale, Mar 14 2023 *)
-
for(n=0, 20, a=10^n-precprime(10^n); b=nextprime(10^n)-10^n; if(a<=b && n!=0, print1(precprime(10^n), ", "), print1(nextprime(10^n), ", "))) \\ Felix Fröhlich, Aug 13 2014
A157035
Largest prime with 2^n digits.
Original entry on oeis.org
7, 97, 9973, 99999989, 9999999999999937, 99999999999999999999999999999979, 9999999999999999999999999999999999999999999999999999999999999949
Offset: 0
A073862
Difference between the largest and the smallest n-digit prime.
Original entry on oeis.org
5, 86, 896, 8964, 89984, 899980, 8999988, 89999970, 899999930, 8999999960, 89999999958, 899999999986, 8999999999932, 89999999999936, 899999999999958, 8999999999999900, 89999999999999936, 899999999999999986, 8999999999999999958, 89999999999999999938
Offset: 1
a(3) = 997 - 101 = 896.
a(1) = 5 because 7-2 = 5.
-
seq(prevprime(10^n)-nextprime(10^(n-1)), n=1..21); # Emeric Deutsch, Mar 28 2005
-
Table[NextPrime[10^(n+1),-1]-NextPrime[10^n],{n,0,18}] (* Harvey P. Dale, May 04 2016 *)
A099658
a(n) is the smallest prime greater than 4(10^n - 1)/9.
Original entry on oeis.org
2, 5, 47, 449, 4447, 44449, 444449, 4444469, 44444453, 444444457, 4444444447, 44444444497, 444444444461, 4444444444493, 44444444444459, 444444444444461, 4444444444444463, 44444444444444461, 444444444444444469, 4444444444444444537, 44444444444444444447
Offset: 0
n=4: 44 is followed by 47.
A099659
a(n) is the least prime following A002279(n) repdigits.
Original entry on oeis.org
7, 59, 557, 5557, 55579, 555557, 5555567, 55555559, 555555587, 5555555557, 55555555619, 555555555559, 5555555555593, 55555555555573, 555555555555557, 5555555555555573, 55555555555555639, 555555555555555559, 5555555555555555621, 55555555555555555567, 555555555555555555619
Offset: 1
n=2: 55 is followed by 59.
A099660
a(n) is the least prime following A002280[n] repdigits.
Original entry on oeis.org
2, 7, 67, 673, 6673, 66683, 666667, 6666679, 66666667, 666666667, 6666666757, 66666666667, 666666666671, 6666666666683, 66666666666737, 666666666666719, 6666666666666719, 66666666666666713, 666666666666666773
Offset: 0
n=6: 66 is followed by 67.
-
Table[NextPrime[6*(10^n-1)/9], {n, 0, 35}]
NextPrime/@Table[FromDigits[PadRight[{},n,6]],{n,0,20}] (* Harvey P. Dale, Feb 25 2015 *)
A099662
a(n) is the least prime following A002282(n) repdigits.
Original entry on oeis.org
2, 11, 89, 907, 8893, 88897, 888917, 8888927, 88888901, 888888901, 8888888891, 88888888901, 888888888919, 8888888888921, 88888888888889, 888888888888907, 8888888888888927, 88888888888888889, 888888888888888947
Offset: 0
n=8: 88 is followed by 89.
A099664
a(n) is the largest prime before A002278(n).
Original entry on oeis.org
3, 43, 443, 4441, 44417, 444443, 4444409, 44444399, 444444443, 4444444429, 44444444441, 444444444443, 4444444444439, 44444444444353, 444444444444421, 4444444444444423, 44444444444444411, 444444444444444419
Offset: 1
A101592
Smallest and largest of the n-digit primes.
Original entry on oeis.org
2, 7, 11, 97, 101, 997, 1009, 9973, 10007, 99991, 100003, 999983, 1000003, 9999991, 10000019, 99999989, 100000007, 999999937, 1000000007, 9999999967, 10000000019, 99999999977, 100000000003, 999999999989, 1000000000039, 9999999999971, 10000000000037
Offset: 1
2 is the smallest 1-digit prime and 7 is the largest 1-digit prime.
100003 is the smallest 6-digit prime and 999983 is the largest 6-digit prime.
-
Table[{NextPrime[10^n],NextPrime[10^(n+1),-1]},{n,0,15}]//Flatten (* Harvey P. Dale, Jun 04 2019 *)
Comments