A334908
Area/6 of primitive Pythagorean triangles generated by {{2, 0}, {1, -1}}^n * {{2}, {1}}, for n >= 0.
Original entry on oeis.org
1, 10, 220, 3080, 52976, 818720, 13333440, 211474560, 3398520576, 54257082880, 869067996160, 13897453373440, 222420341682176, 3558236809994240, 56935698394234880, 910939899548958720, 14575288593717067776, 233202615903456460800
Offset: 0
a(0) = 3*4/12 = 1 for the triangle (3, 4, 5).
- G. C. Greubel, Table of n, a(n) for n = 0..825
- V. E. Firstov, A Special Matrix Transformation Semigroup of Primitive Pairs and the Genealogy of Pythagorean Triples; Mathematical Notes, volume 84, number 2, August 2008, pages 263-279; Link of the page (for the Russian article).
- H. Lee Price, The Pythagorean Tree: A New Species, arXiv:0809.4324 [math.HO], 2008-2011
- R. Steiner, Spezielle Folge primitiver pythagoräischer Dreiecke, researchgate.net, 2020
- Index entries for linear recurrences with constant coefficients, signature (10,120,-320,-1024).
-
[(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81: n in [0..40]]; // G. C. Greubel, Feb 18 2023
-
Table[(2^(2*n+1)*(2^(2*n+5) -3) + (-2)^n*(3*2^(2*n+3) -1))/3^4, {n,0,40}]
-
[(2^(2*n+1)*(2^(2*n+5) -3) +(-2)^n*(3*2^(2*n+3) -1))/81 for n in range(41)] # G. C. Greubel, Feb 18 2023
A368043
Triangle read by rows: T(n, k) = 2^(n + k).
Original entry on oeis.org
1, 2, 4, 4, 8, 16, 8, 16, 32, 64, 16, 32, 64, 128, 256, 32, 64, 128, 256, 512, 1024, 64, 128, 256, 512, 1024, 2048, 4096, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 0
[0] [ 1]
[1] [ 2, 4]
[2] [ 4, 8, 16]
[3] [ 8, 16, 32, 64]
[4] [ 16, 32, 64, 128, 256]
[5] [ 32, 64, 128, 256, 512, 1024]
[6] [ 64, 128, 256, 512, 1024, 2048, 4096]
[7] [128, 256, 512, 1024, 2048, 4096, 8192, 16384]
[8] [256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
Cf.
A000079 (T(n,0)),
A004171 (T(n,n-1)),
A000302 (T(n,n)),
A171476 (row sums),
A003683 (alternating row sums),
A134353 (antidiagonal sums),
A001018 (T(2n, n)),
A094014 (T(n, n/2)),
A002697.
-
Array[2^Range[#,2#]&,10,0] (* Paolo Xausa, Dec 09 2023 *)
-
from functools import cache
@cache
def T_row(n: int) -> list[int]:
if n == 0: return [1]
row = T_row(n - 1) + [0]
for k in range(n): row[k] *= 2
row[n] = row[n - 1] * 2
return row
for n in range(11): print(T_row(n))
Original entry on oeis.org
1, 1, 4, 1, 16, 9, 64, 25, 256, 121, 1024, 441, 4096, 1849, 16384, 7225, 65536, 29241, 262144, 116281, 1048576, 466489, 4194304, 1863225, 16777216, 7458361, 67108864, 29822521, 268435456, 119311929, 1073741824, 477204025, 4294967296, 1908903481, 17179869184
Offset: 0
-
LinearRecurrence[{0, 3, 0, 6, 0, -8}, {1, 1, 4, 1, 16, 9}, 35] (* Amiram Eldar, Jul 01 2024 *)
A110953
Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 9 times the bottom to get the new top.
Original entry on oeis.org
2, 12, 40, 176, 672, 2752, 10880, 43776, 174592, 699392, 2795520, 11186176, 44736512, 178962432, 715816960, 2863333376, 11453202432, 45813071872, 183251763200, 733008101376, 2932030308352, 11728125427712, 46912493322240, 187649990066176, 750599926710272
Offset: 1
- Prime Obsession, John Derbyshire, Joseph Henry Press, April 2004, p. 16.
-
g(n,k,typ) = /* typ = 1 numerator, 2 denominator, k = multiple of denom */ { local(a,b,x,tmp); a=1;b=1; for(x=1,n, tmp=b; b=a+b; a=k*tmp+a; if(typ==1,print1(a","),print1(b",")) ); print(); print(a/b+.) }
-
from itertools import islice
def A110953_gen(): # generator of terms
a, b = 1, 1
while True:
a, b = a+9*b, a+b
yield b
A110953_list = list(islice(A110953_gen(),30)) # Chai Wah Wu, Apr 15 2025
A292847
a(n) is the smallest odd prime of the form ((1 + sqrt(2*n))^k - (1 - sqrt(2*n))^k)/(2*sqrt(2*n)).
Original entry on oeis.org
5, 7, 101, 11, 13, 269, 17, 19, 509, 23, 709, 821, 29, 31, 46957, 55399, 37, 168846239, 41, 43, 9177868096974864412935432937651459122761, 47, 485329129, 2789, 53, 3229, 3461, 59, 61, 1563353111, 139237612541, 67, 5021, 71, 73, 484639, 6221, 79, 6869, 83, 7549
Offset: 1
For k = {1, 2, 3, 4, 5}, ((1 + sqrt(6))^k - (1 - sqrt(6))^k)/(2*sqrt(6)) = {1, 2, 9, 28, 101}. 101 is odd prime, so a(3) = 101.
Cf.
A000129,
A002605,
A015518,
A063727,
A002532,
A083099,
A015519,
A003683,
A002534,
A083102,
A015520,
A091914,
A079773,
A161007,
A099134.
-
g[n_, k_] := ((1 + Sqrt[n])^k - (1 - Sqrt[n])^k)/(2Sqrt[n]);
Table[k = 3; While[! PrimeQ[Expand@g[2n, k]], k++]; Expand@g[2n, k], {n, 41}]
-
g(n,k) = ([0,1;2*n-1,2]^k*[0;1])[1,1]
a(n) = for(k=3,oo,if(ispseudoprime(g(n,k)),return(g(n,k)))) \\ Jason Yuen, Apr 12 2025
A352692
a(n) + a(n+1) = 2^n for n >= 0 with a(0) = 4.
Original entry on oeis.org
4, -3, 5, -1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119, 22906492249
Offset: 0
-
a := proc(n) option remember; ifelse(n = 0, 4, 2^(n-1) - a(n-1)) end: # Peter Luschny, Mar 29 2022
A352691 := proc(n)
(11*(-1)^n + 2^n)/3
end proc: # R. J. Mathar, Apr 26 2022
-
LinearRecurrence[{1, 2}, {4, -3}, 40] (* Amiram Eldar, Mar 29 2022 *)
-
a(n) = (11*(-1)^n + 2^n)/3; \\ Thomas Scheuerle, Mar 29 2022
Warning: The DATA is correct, but there may be errors in the COMMENTS, which should be rechecked. - Editors of OEIS, Apr 26 2022
A370627
a(n) = 2^(n - 1)*((-1)^(n + 1) + 7*2^n)/3 = 2^(n - 1)*A062092(n).
Original entry on oeis.org
1, 5, 18, 76, 296, 1200, 4768, 19136, 76416, 305920, 1223168, 4893696, 19572736, 78295040, 313171968, 1252704256, 5010784256, 20043202560, 80172679168, 320690978816, 1282763390976, 5131054612480, 20524216352768, 82096869605376, 328387470032896, 1313549896908800, 5254199554080768
Offset: 0
Comments