A166500
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968735, 1464843600, 7324217640, 36621086400, 183105423000, 915527070000, 4577635125000, 22888174500000, 114440866875000, 572204306250000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,4,4,4,4,4,4,4,4,4,4,-10).
-
R:=PowerSeriesRing(Integers(), 30);
f:= func< p,q,x | (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) >;
Coefficients(R!( f(10,4,x) )); // G. C. Greubel, Aug 03 2024
-
With[{p=10, q=4}, CoefficientList[Series[(1+t)*(1-t^12)/(1 - (q+1)*t + (p+q)*t^12 - p*t^13), {t,0,40}], t]] (* G. C. Greubel, May 15 2016; Aug 02 2024 *)
coxG[{12, 10, -4, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 03 2024 *)
-
def f(p,q,x): return (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13)
def A166500_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( f(10,4,x) ).list()
A166500_list(30) # G. C. Greubel, Aug 03 2024
A166877
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843735, 7324218600, 36621092640, 183105461400, 915527298000, 4577636445000, 22888182000000, 114440908875000, 572204538750000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
With[{num=Total[2t^Range[12]]+t^13+1,den=Total[-4 t^Range[12]]+ 10t^13+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jul 27 2011 *)
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 27 2016 *)
A167107
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218735, 36621093600, 183105467640, 915527336400, 4577636673000, 22888183320000, 114440916375000, 572204580750000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (10*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167651
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093735, 183105468600, 915527342640, 4577636711400, 22888183548000, 114440917695000, 572204588250000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
A167897
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468735, 915527343600, 4577636717640, 22888183586400, 114440917923000, 572204589570000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
A168683
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343735, 4577636718600, 22888183592640, 114440917961400, 572204589798000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-10).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) )); // G. C. Greubel, Feb 22 2021
-
CoefficientList[Series[(1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18), {t, 0, 40}], t] (* G. C. Greubel, Aug 03 2016, Feb 22 2021 *)
coxG[{17,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 09 2017 *)
-
def A168683_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -5*t +14*t^17 -10*t^18) ).list()
A168683_list(40) # G. C. Greubel, Feb 22 2021
A168731
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^18 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718735, 22888183593600, 114440917967640, 572204589836400
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
CoefficientList[Series[(t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t,0,50}], t] (* G. C. Greubel, Aug 06 2016 *)
A168779
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^19 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593735, 114440917968600, 572204589842640
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
coxG[{19,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 02 2016 *)
CoefficientList[Series[(t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^19 - 4*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Aug 12 2016 *)
A168827
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968735, 572204589843600
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
-
coxG[{20,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 26 2015 *)
CoefficientList[Series[(t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(10*t^20 - 4*t^19 - 4*t^18 - 4*t^17 - 4*t^16 - 4*t^15 - 4*t^14 - 4*t^13 - 4*t^12 - 4*t^11 - 4*t^10 - 4*t^9 - 4*t^8 - 4*t^7 - 4*t^6 - 4*t^5 - 4*t^4 - 4*t^3 - 4*t^2 - 4*t + 1), {t,0,100}], t] (* G. C. Greubel, Nov 22 2016 *)
A169403
Number of reduced words of length n in Coxeter group on 6 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.
Original entry on oeis.org
1, 6, 30, 150, 750, 3750, 18750, 93750, 468750, 2343750, 11718750, 58593750, 292968750, 1464843750, 7324218750, 36621093750, 183105468750, 915527343750, 4577636718750, 22888183593750, 114440917968750, 572204589843750
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..165
- Index entries for linear recurrences with constant coefficients, signature (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, -10).
Cf.
A003948 (G.f.: (1+x)/(1-5*x) ).
-
coxG[{32,10,-4,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 27 2024 *)
-
x='x+O('x^66); /* that many terms */
Vec((1+2*sum(k=1,31,x^k)+x^32)/(1-4*sum(k=1,31,x^k)+10*x^32)) /* show terms */
/* Joerg Arndt, Jun 26 2011 */
Comments