A163345
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9051, 54180, 324345, 1941660, 11623500, 69582660, 416548125, 2493614550, 14927719275, 89362970550, 534960522600, 3202475913000, 19171231408875, 114766238286000, 687034086094125, 4112845750671000
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{5,5,5,5,-15}, {1,7,42,252,1512,9051}, 30] (* G. C. Greubel, Dec 19 2016 *)
coxG[{5,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 09 2018 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6)) \\ G. C. Greubel, Dec 19 2016
-
((1+x)*(1-x^5)/(1-6*x+20*x^5-15*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163923
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54411, 326340, 1957305, 11739420, 70410060, 422301600, 2532857460, 15191434125, 91114353750, 546480693675, 3277652052150, 19658522431800, 117906811965600, 707175035973000, 4241455800274875
Offset: 0
-
a:=[7,42,252,1512,9072,54411];; for n in [7..30] do a[n]:=5*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -15*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
coxG[{6,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 18 2015 *)
CoefficientList[Series[(1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 08 2017 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7)) \\ G. C. Greubel, Aug 08 2017
-
def A163923_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-6*t+20*t^6-15*t^7)).list()
A163923_list(30) # G. C. Greubel, Aug 10 2019
A165782
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543851, 423262980, 2539577145, 15237458460, 91424724300, 548548187040, 3291288169680, 19747723302720, 118486305524160, 710917627392000, 4265504529834660
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,5,5,5,5,5,5,5,5,-15).
-
a:=[7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543851];; for n in [11..30] do a[n]:=5*Sum([1..9], j-> a[n-j]) -15*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 22 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-6*t+15*t^10-6*t^11) )); // G. C. Greubel, Sep 22 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-6*t+15*t^10-6*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Sep 22 2019
-
CoefficientList[Series[(1+t)*(1-t^10)/(1-6*t+15*t^10-6*t^11), {t, 0, 30}], t] (* G. C. Greubel, Apr 08 2016 *)
coxG[{10, 15, -5}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 22 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-6*t+15*t^10-6*t^11)) \\ G. C. Greubel, Aug 07 2017
-
def A165782_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^10)/(1-6*t+15*t^10-6*t^11) ).list()
A165782_list(30) # G. C. Greubel, Sep 22 2019
A166365
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263211, 2539579140, 15237474105, 91424840220, 548549014860, 3291293930400, 19747762629840, 118486570063680, 710919386089920, 4265516110786560
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,5,5,5,5,5,5,5,5,5,-15).
-
seq(coeff(series((1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 13 2020
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12), {t,0,30}], t] (* G. C. Greubel, May 10 2016 *)
coxG[{11, 15, -5}] (* The coxG program is in A169452 *) (* G. C. Greubel, Mar 13 2020 *)
-
def A166365_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^11)/(1-6*t+20*t^11-15*t^12) ).list()
A166365_list(30) # G. C. Greubel, Aug 10 2019
A166518
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579371, 15237476100, 91424855865, 548549130780, 3291294758220, 19747768390560, 118486609390800, 710919650629440, 4265517869484480
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,5,5,5,5,5,5,5,5,5,5,-15).
-
R:=PowerSeriesRing(Integers(), 30);
f:= func< p,q,x | (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13) >;
Coefficients(R!( f(15,5,x) )); // G. C. Greubel, Aug 03 2024
-
With[{p=15, q=5}, CoefficientList[Series[(1+t)*(1-t^12)/(1 - (q+1)*t + (p+q)*t^12 - p*t^13), {t,0,40}], t]] (* G. C. Greubel, May 15 2016; Aug 03 2024 *)
coxG[{12, 15, -5, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 03 2024 *)
-
Vec((t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1)+O(t^99))
-
def f(p,q,x): return (1+x)*(1-x^12)/(1-(q+1)*x+(p+q)*x^12-p*x^13)
def A166518_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( f(15,5,x) ).list()
A166518_list(30) # G. C. Greubel, Aug 03 2024
A166878
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476331, 91424857860, 548549146425, 3291294874140, 19747769218380, 118486615151520, 710919689956560, 4265518134024000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 27 2016 *)
A167108
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858091, 548549148420, 3291294889785, 19747769334300, 118486615979340, 710919695717280, 4265518173351120
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (15*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
coxG[{14,15,-5}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 08 2018 *)
A167652
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148651, 3291294891780, 19747769349945, 118486616095260, 710919696545100, 4265518179111840
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 18 2016 *)
A167898
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892011, 19747769351940, 118486616110905, 710919696661020, 4265518179939660
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, -15).
-
CoefficientList[Series[(t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016 *)
A168684
Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^17 = I.
Original entry on oeis.org
1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352171, 118486616112900, 710919696676665, 4265518180055580
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,-15).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+t)*(1-t^17)/(1 -6*t +20*t^17 -15*t^18) )); // G. C. Greubel, Mar 24 2021
-
CoefficientList[Series[(1+t)*(1-t^17)/(1 -6*t +20*t^17 -15*t^18), {t, 0, 50}], t] (* G. C. Greubel, Aug 03 2016; Mar 24 2021 *)
coxG[{17, 15, -5, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Mar 24 2021 *)
-
def A168684_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^17)/(1 -6*t +20*t^17 -15*t^18) ).list()
A168684_list(40) # G. C. Greubel, Mar 24 2021
Comments