cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 57 results. Next

A163432 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175626, 1931160, 21234840, 233496120, 2567499000, 28231951770, 310435603500, 3413517587700, 37534684133100, 412727480315700, 4538308419052650, 49902767052699000, 548725632894681000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6) )); // G. C. Greubel, May 12 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{10,10,10,10,-55}, {1,12,132,1452,15972, 175626}, 30] (* G. C. Greubel, Dec 23 2016 *)
    coxG[{5, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)) \\ G. C. Greubel, Dec 23 2016
    
  • Sage
    ((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019

Formula

G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
a(n) = 10*a(n-1)+10*a(n-2)+10*a(n-3)+10*a(n-4)-55*a(n-5). - Wesley Ivan Hurt, May 10 2021

A163957 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932546, 21257280, 233822160, 2571956640, 28290564720, 311185670400, 3422926421970, 37650915208500, 414146038003500, 4555452101075700, 50108275682741100, 551172361422635700
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[12,132,1452,15972,175692,1932546];; for n in [7..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7) )); // G. C. Greubel, Aug 10 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 13 2017 *)
    coxG[{6, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)) \\ G. C. Greubel, Aug 13 2017
    
  • Sage
    def A163957_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)).list()
    A163957_list(30) # G. C. Greubel, Aug 10 2019
    

Formula

G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
a(n) = -55*a(n-6) + 10*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021

A164601 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258666, 233844600, 2572282680, 28295022360, 311244287640, 3423676622520, 37660326891000, 414262320281370, 4556871492422700, 50125432079728500, 551378055176107500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[12, 132, 1452, 15972, 175692, 1932612, 21258666];; for n in [8..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8) )); // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8), {t, 0, 30}], t] (* G. C. Greubel, Aug 11 2017 *)
    coxG[{7, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 28 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8)) \\ G. C. Greubel, Aug 11 2017
    
  • Sage
    def A164601_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8)).list()
    A164601_list(30) # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
a(n) = -55*a(n-7) + 10*Sum_{k=1..6} a(n-k). - Wesley Ivan Hurt, May 11 2021

A165266 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306506, 28295370840, 311249071320, 3423739697400, 37661135713080, 414272482302360, 4556997189369240, 50126967807537720, 551396631852151800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306506];; for n in [10..30] do a[n]:=10*Sum([1..8], j-> a[n-j]) -55*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10) )); // G. C. Greubel, Sep 25 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), {t,0,30}], t] (* or *) coxG[{9, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
  • PARI
    my(t='t+O('t^30)); Vec((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)) \\ G. C. Greubel, Sep 25 2019
    
  • Sage
    def A165266_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)).list()
    A165266_list(30) # G. C. Greubel, Sep 25 2019
    

Formula

G.f.: (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).

A165807 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372226, 311249093760, 3423740023440, 37661140170720, 414272540919600, 4556997939574080, 50126977219358160, 551396748137415840
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
First disagreement at index 10: a(10) = 28295372226, A003954(10) = 28295372292. - Klaus Brockhaus, Jun 14 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A003954 (G.f.: (1+x)/(1-11*x)).

Programs

  • GAP
    a:=[12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372226];; for n in [11..20] do a[n]:=10*Sum([1..9], j-> a[n-j]) -55*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11) )); // G. C. Greubel, Sep 23 2019
    
  • Maple
    seq(coeff(series((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 23 2019
  • Mathematica
    With[{num=Total[2t^Range[9]]+1+t^10,den=Total[-10 t^Range[9]]+1+ 55t^10}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jun 14 2011 *)
    CoefficientList[Series[(1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11), {t, 0, 30}], t] (* or *) coxG[{10, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 23 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11)) \\ G. C. Greubel, Sep 23 2019
    
  • Sage
    def A165807_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11)).list()
    A165807_list(20) # G. C. Greubel, Sep 23 2019
    

Formula

G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).

A166372 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095146, 3423740045880, 37661140496760, 414272545377240, 4556997998191320, 50126977969563000, 551396757549236280
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) )); // G. C. Greubel, Dec 06 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^11)/(1-11*t+65*t^11-55*t^12), {t,0,50}], t] (* G. C. Greubel, May 10 2016; Dec 06 2024 *)
    coxG[{11,55,-10,40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
  • SageMath
    def A166372_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) ).list()
    print(A166372_list(40)) # G. C. Greubel, Dec 06 2024

Formula

G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
From G. C. Greubel, Dec 06 2024: (Start)
a(n) = 10*Sum_{j=1..10} a(n-j) - 55*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 11*x + 65*x^11 - 55*x^12). (End)

A166557 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047266, 37661140519200, 414272545703280, 4556998002648960, 50126978028180240, 551396758299441120, 6065364341177895600, 66719007751681327680
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40);
    Coefficients(R!( (1+x)*(1-x^12)/(1-11*x+65*x^12-55*x^13) )); // G. C. Greubel, Dec 03 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^12)/(1-11*t+65*t^12-55*t^13), {t,0,50}], t]
    (* G. C. Greubel, May 17 2016; Dec 03 2024 *)
    coxG[{12,55,-10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
  • SageMath
    def A166557_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^12)/(1-11*x+65*x^12-55*x^13) ).list()
    A166557_list(40) # G. C. Greubel, Dec 03 2024

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t +1).
From G. C. Greubel, Dec 03 2024: (Start)
a(n) = 10*Sum_{j=1..11} a(n-j) - 55*a(n-12).
G.f.: (1+t)*(1 - t^12)/(1 - 11*t + 65*t^12 - 55*t^13). (End)

A166951 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520586, 414272545725720, 4556998002975000, 50126978032637880, 551396758358058360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 29 2016 *)

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).

A167113 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727106, 4556998002997440, 50126978032963920, 551396758362516000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (55*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)

Formula

G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).

A167665 Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.

Original entry on oeis.org

1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998826, 50126978032986360, 551396758362842040
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 19 2016 *)

Formula

G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
Previous Showing 11-20 of 57 results. Next