A163432
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175626, 1931160, 21234840, 233496120, 2567499000, 28231951770, 310435603500, 3413517587700, 37534684133100, 412727480315700, 4538308419052650, 49902767052699000, 548725632894681000
Offset: 0
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6) )); // G. C. Greubel, May 12 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6), {x, 0, 30}], x] (* or *) LinearRecurrence[{10,10,10,10,-55}, {1,12,132,1452,15972, 175626}, 30] (* G. C. Greubel, Dec 23 2016 *)
coxG[{5, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 12 2019 *)
-
my(x='x+O('x^30)); Vec((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)) \\ G. C. Greubel, Dec 23 2016
-
((1+x)*(1-x^5)/(1-11*x+65*x^5-55*x^6)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 12 2019
A163957
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932546, 21257280, 233822160, 2571956640, 28290564720, 311185670400, 3422926421970, 37650915208500, 414146038003500, 4555452101075700, 50108275682741100, 551172361422635700
Offset: 0
-
a:=[12,132,1452,15972,175692,1932546];; for n in [7..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7) )); // G. C. Greubel, Aug 10 2019
-
seq(coeff(series((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
-
CoefficientList[Series[(1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), {t,0,30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)) \\ G. C. Greubel, Aug 13 2017
-
def A163957_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)).list()
A163957_list(30) # G. C. Greubel, Aug 10 2019
A164601
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258666, 233844600, 2572282680, 28295022360, 311244287640, 3423676622520, 37660326891000, 414262320281370, 4556871492422700, 50125432079728500, 551378055176107500
Offset: 0
-
a:=[12, 132, 1452, 15972, 175692, 1932612, 21258666];; for n in [8..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-7]; od; Concatenation([1], a); # G. C. Greubel, Aug 28 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8) )); // G. C. Greubel, Aug 28 2019
-
seq(coeff(series((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 28 2019
-
CoefficientList[Series[(1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8), {t, 0, 30}], t] (* G. C. Greubel, Aug 11 2017 *)
coxG[{7, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 28 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8)) \\ G. C. Greubel, Aug 11 2017
-
def A164601_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^7)/(1-11*t+65*t^7-55*t^8)).list()
A164601_list(30) # G. C. Greubel, Aug 28 2019
A165266
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306506, 28295370840, 311249071320, 3423739697400, 37661135713080, 414272482302360, 4556997189369240, 50126967807537720, 551396631852151800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..955
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,-55).
-
a:=[12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306506];; for n in [10..30] do a[n]:=10*Sum([1..8], j-> a[n-j]) -55*a[n-9]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
-
R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10) )); // G. C. Greubel, Sep 25 2019
-
seq(coeff(series((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019
-
CoefficientList[Series[(1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10), {t,0,30}], t] (* or *) coxG[{9, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
-
my(t='t+O('t^30)); Vec((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)) \\ G. C. Greubel, Sep 25 2019
-
def A165266_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^9)/(1-11*t+65*t^9-55*t^10)).list()
A165266_list(30) # G. C. Greubel, Sep 25 2019
A165807
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372226, 311249093760, 3423740023440, 37661140170720, 414272540919600, 4556997939574080, 50126977219358160, 551396748137415840
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,-55).
Cf.
A003954 (G.f.: (1+x)/(1-11*x)).
-
a:=[12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372226];; for n in [11..20] do a[n]:=10*Sum([1..9], j-> a[n-j]) -55*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 23 2019
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11) )); // G. C. Greubel, Sep 23 2019
-
seq(coeff(series((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11), t, n+1), t, n), n = 0..20); # G. C. Greubel, Sep 23 2019
-
With[{num=Total[2t^Range[9]]+1+t^10,den=Total[-10 t^Range[9]]+1+ 55t^10}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jun 14 2011 *)
CoefficientList[Series[(1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11), {t, 0, 30}], t] (* or *) coxG[{10, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 23 2019 *)
-
my(t='t+O('t^20)); Vec((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11)) \\ G. C. Greubel, Sep 23 2019
-
def A165807_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-11*t+65*t^10-55*t^11)).list()
A165807_list(20) # G. C. Greubel, Sep 23 2019
A166372
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095146, 3423740045880, 37661140496760, 414272545377240, 4556997998191320, 50126977969563000, 551396757549236280
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,10,-55).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) )); // G. C. Greubel, Dec 06 2024
-
CoefficientList[Series[(1+t)*(1-t^11)/(1-11*t+65*t^11-55*t^12), {t,0,50}], t] (* G. C. Greubel, May 10 2016; Dec 06 2024 *)
coxG[{11,55,-10,40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
-
def A166372_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) ).list()
print(A166372_list(40)) # G. C. Greubel, Dec 06 2024
A166557
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047266, 37661140519200, 414272545703280, 4556998002648960, 50126978028180240, 551396758299441120, 6065364341177895600, 66719007751681327680
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,10,10,-55).
-
R:=PowerSeriesRing(Integers(), 40);
Coefficients(R!( (1+x)*(1-x^12)/(1-11*x+65*x^12-55*x^13) )); // G. C. Greubel, Dec 03 2024
-
CoefficientList[Series[(1+t)*(1-t^12)/(1-11*t+65*t^12-55*t^13), {t,0,50}], t]
(* G. C. Greubel, May 17 2016; Dec 03 2024 *)
coxG[{12,55,-10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 03 2024 *)
-
def A166557_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-11*x+65*x^12-55*x^13) ).list()
A166557_list(40) # G. C. Greubel, Dec 03 2024
A166951
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520586, 414272545725720, 4556998002975000, 50126978032637880, 551396758358058360
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
-
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 29 2016 *)
A167113
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727106, 4556998002997440, 50126978032963920, 551396758362516000
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
-
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (55*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 03 2016 *)
A167665
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
Original entry on oeis.org
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998826, 50126978032986360, 551396758362842040
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, -55).
-
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^15 - 10*t^14 - 10*t^13 - 10*t^12 - 10*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 19 2016 *)
Comments