cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A357420 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.

Original entry on oeis.org

1, 1, 1, 8, 86, 878, 13730, 348760, 11622396, 509566864, 26894616012, 1701189027944, 125492778658096, 10738546182981256, 1049631636279244832, 117756049412699967072
Offset: 0

Views

Author

Stefano Spezia, Sep 27 2022

Keywords

Examples

			a(4) = 86:
    0,  1,  0,  0,  0,  0,  0,  0;
    1,  0,  1,  2,  0,  0,  0,  0;
    0,  1,  0,  1,  2,  3,  0,  0;
    0,  2,  1,  0,  1,  2,  3,  4;
    0,  0,  2,  1,  0,  1,  2,  3;
    0,  0,  3,  2,  1,  0,  1,  2;
    0,  0,  0,  3,  2,  1,  0,  1;
    0,  0,  0,  4,  3,  2,  1,  0.
		

Crossrefs

Cf. A000982 (number of zero matrix elements of M(n)), A003983, A007590 (number of positive matrix elements of M(n)), A049581, A051125, A352967, A353452 (determinant of M(n)), A353453 (permanent of M(n)).

Programs

  • Mathematica
    M[i_, j_, n_] := If[Min[i, j] < Max[i, j] <= 2 Min[i, j], Abs[j - i], 0]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0]

Extensions

a(6)-a(15) from Pontus von Brömssen, Oct 16 2023

A362711 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j.

Original entry on oeis.org

1, 1, 17, 1177, 210249, 76961257, 50203153993, 53127675356625, 85252003916011889, 197131843368693693937, 631233222450168374457057
Offset: 0

Views

Author

Stefano Spezia, Apr 30 2023

Keywords

Comments

M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n.
The elements sum of the matrix M(n) is A002415(n+1).
The antidiagonal sum of the matrix M(n) is A005993(n-1).
The n-th row of A107985 gives the row or column sums of the matrix M(n+1).

Examples

			a(2) = 17:
    [4, 3, 2, 1]
    [3, 6, 4, 2]
    [2, 4, 6, 3]
    [1, 2, 3, 4]
		

References

  • E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957.

Crossrefs

Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985, A362679 (permanent).

Programs

  • Mathematica
    M[i_, j_, n_]:=Part[Part[Table[Min[r,c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
  • PARI
    tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j);
    a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023

Formula

Conjecture: det(M(n)) = A000272(n+1).
The conjecture is true (see proof in Links). - Stefano Spezia, May 24 2023

Extensions

a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
Previous Showing 41-42 of 42 results.