cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 587 results. Next

A070246 a(n) = lcm(n, R(n)) / gcd(n, R(n)), where R(n) (A004086) is the digit reversal of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 28, 403, 574, 85, 976, 1207, 18, 1729, 10, 28, 1, 736, 28, 1300, 403, 24, 574, 2668, 10, 403, 736, 1, 1462, 1855, 28, 2701, 3154, 403, 10, 574, 28, 1462, 1, 30, 736, 3478, 28, 4606, 10, 85, 1300, 1855, 30, 1, 3640, 475, 4930, 5605
Offset: 1

Views

Author

Amarnath Murthy, May 09 2002

Keywords

Comments

a(1) = 1, a(18) = 18. Are there more terms for which a(k) = k?

Examples

			a(12) = lcm(12,21)/gcd(12,21) = 84/3 = 28.
		

Programs

  • Mathematica
    r[n_] := FromDigits[ Reverse[ IntegerDigits[n]]]; Table[ LCM[n, r[n]] / GCD[n, r[n]], {n, 1, 65}]

Extensions

Edited by Robert G. Wilson v, May 10 2002

A070839 Smallest number k such that k + R(k) is a multiple of 11 different from all previous cases, where R(k) is digit reversal of k (A004086).

Original entry on oeis.org

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 29, 39, 49, 59, 69, 79, 89, 99, 121, 132, 143, 154, 165, 176, 187, 198, 209, 319, 429, 539, 649, 759, 869, 979, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018
Offset: 1

Views

Author

Amarnath Murthy, May 12 2002

Keywords

Extensions

Corrected and extended by Larry Reeves (larryr(AT)xnet.com), Oct 04 2002

A072033 Smallest x > 0 such that gcd(2^x, A004086(2^x)) = 2^n.

Original entry on oeis.org

4, 1, 2, 3, 26, 131, 227, 301, 567, 879, 3240, 11051, 8048, 38911, 7321, 97309, 108190, 6294, 138124, 4675268, 2687104, 1336154, 5774420
Offset: 1

Views

Author

Labos Elemer, Jun 07 2002

Keywords

Comments

a(14)=7321, a(17)=6294.

Examples

			n=4: a(4)=26 because gcd(2^26, reverse(2^26)) = gcd(67108864, 46880176) = 16 = 2^n.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{k=1}, While[ IntegerExponent[ GCD[2^k, FromDigits@ Reverse@ IntegerDigits[2^k]], 2] != n, k++]; k]; Array[a, 13, 0] (* Giovanni Resta, Oct 28 2019 *)

Formula

a(n) = min{x: gcd(2^x, reverse(2^x))=2^n} = min{x: A055483(x)=2^n}.
A072032(a(n)) = 2^n.

Extensions

Offset corrected, missing a(3) and a(13)-a(22) added by Giovanni Resta, Oct 28 2019

A088490 a(n) is the absolute value of p minus A004086(p), where (p-2,p) is the n-th pair of twin primes.

Original entry on oeis.org

0, 0, 18, 72, 18, 9, 45, 36, 198, 792, 792, 0, 0, 198, 792, 693, 99, 99, 99, 0, 594, 297, 99, 99, 198, 396, 495, 297, 297, 495, 693, 495, 99, 99, 495, 180, 2268, 450, 2538, 2808, 2358, 90, 8442, 630, 1728, 90, 7812, 2088, 2358, 8352, 7452, 360
Offset: 1

Views

Author

Cino Hilliard, Nov 09 2003

Keywords

Comments

9 divides each term.

Examples

			The 4th pair of twin primes is (17,19). a(4) then is the absolute value of 19 - 91, which is 72.
		

Programs

  • Mathematica
    a = {}; For[n = 1, n < 275, n++, If[Prime[n + 1] == Prime[n] + 2, AppendTo[a, Abs[Prime[n + 1] - FromDigits[Reverse[IntegerDigits[Prime[n + 1]]]]]]]]; a
  • PARI
    revdifftp2(n) = { forprime(x=1,n, if(isprime(x+2), a=vector(x); x1=x+2; z=0; ln=length(Str(x1)); for(y=1,ln, a[y] = x1%10; x1=floor(x1/10); ); for(y=1,ln, z += a[y]*10^(ln-y); ); print1(abs(z-(x+2))" "); ) ) }

Extensions

Edited by Stefan Steinerberger, Jul 22 2007

A178836 Numbers n such that the period of 1/n equals the period of 1/R(n), where R(n) (A004086) is the reversal of n.

Original entry on oeis.org

3, 7, 9, 11, 33, 77, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 707, 717, 727, 737, 747, 757, 767, 777, 787, 797, 909, 919, 929, 939, 949, 959, 969, 979, 989, 999, 1001, 1111, 1221, 1331, 1441, 1551
Offset: 1

Views

Author

Michel Lagneau, Jun 16 2010

Keywords

Comments

Non-palindromic numbers are included in this sequence :
{3267, 3927, 7293, 7632,...}

Examples

			3267 is in the sequence because period (1/3267) = 66 and also period(1/7623) = 66.
3927 is in the sequence because period (1/3927) = 48 and also period(1/7293) = 48.
		

Crossrefs

Programs

  • Maple
    with(numtheory): nn:=8000:for n from 3 to nn do: s:=0:l:=length(n):for q from 0 to l-1 do:x:=iquo(n,10^q):y:=irem(x,10):s:=s+y*10^(l-1-q): od: indic1:=0:for p from 1 to nn do:if irem(10^p, n) = 1 and gcd(n, 5) = 1 and indic1=0 then pp:=p: indic1:=1:else fi:od: indic2:=0:for p from 1 to nn do:if irem(10^p, s) = 1 and gcd(s, 5) = 1 and indic2=0 then ppp:=p:indic2:=1:else fi:od: if pp=ppp and indic1=1 and indic2=1 then print(n):else fi:od:

A289140 Positive numbers k such that rev(k)^2 + rev(k^2) is a square, where rev(n) = A004086(n) is the digital reverse of n.

Original entry on oeis.org

998586, 3632658, 9985860, 36326580, 74471091, 99664458, 99858600, 363265800, 634826115, 743193501, 744710910, 756335085, 759317343, 996644580, 998586000, 3632658000, 6348261150, 7177621788, 7431935010, 7447109100, 7563350850, 7593173430, 9966445800
Offset: 1

Views

Author

Giovanni Resta, Jun 26 2017

Keywords

Comments

Every term must be a multiple of 3.

Examples

			998586 is a term since rev(998586^2) + 685899^2 = 1079100^2.
		

Crossrefs

Programs

  • Mathematica
    rev[n_] := FromDigits@ Reverse@ IntegerDigits@ n; Parallelize@ Select[3 Range[4 10^6], IntegerQ@ Sqrt[rev[#^2] + rev[#]^2] &]
  • PARI
    isok(n) = issquare(fromdigits(Vecrev(digits(n)))^2 + fromdigits(Vecrev(digits(n^2)))); \\ Michel Marcus, Jun 29 2017

A307799 a(0) = 0, a(1) = 3; a(n) = rev(a(n-1))*a(n-1) + a(n-2), where rev = digit reversal (A004086).

Original entry on oeis.org

0, 3, 9, 84, 4041, 5673648, 48020423368761, 806086788756824484462571572, 221815145293562950532110825781341443907408910699844537
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 29 2019

Keywords

Comments

The next term is too large to include.

Examples

			+---+--------------+---------------------+------------------+
| n | a(n)/a(n+1)  | Continued fraction  |      Comment     |
+---+--------------+---------------------+------------------+
| 1 |    3/9       | [0; 3]              |    3 = rev(a(1)) |
+---+--------------+---------------------+------------------+
| 2 |    9/84      | [0; 9, 3]           |    9 = rev(a(2)) |
+---+--------------+---------------------+------------------+
| 3 |   84/4041    | [0; 48, 9, 3]       |   48 = rev(a(3)) |
+---+--------------+---------------------+------------------+
| 4 | 4041/5673648 | [0; 1404, 48, 9, 3] | 1404 = rev(a(4)) |
+---+--------------+---------------------+------------------+
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = FromDigits[Reverse[IntegerDigits[a[n - 1]]]] a[n - 1] + a[n - 2]; a[0] = 0; a[1] = 3; Table[a[n], {n, 0, 8}]

A332850 Numbers k = a^2 + b^2 such that reversal(k) = a^2 - b^2 for a > b > 0, where reversal is A004086.

Original entry on oeis.org

699796, 4854634, 6752626, 84036010, 931910661, 21584860960, 52554850525, 467170024564, 637843128736, 638730439636, 638734039636, 638943127636, 727830438745, 727834038745, 746710459825, 746754019825, 748943127625, 9894192267061, 401309596403104, 844181015028970
Offset: 1

Views

Author

Metin Sariyar, Feb 26 2020

Keywords

Comments

When b=0, the palindromic numbers m = a^2 + b^2 such that reversal(m) = a^2 - b^2, are A002779 (palindromic squares).
a(19) > 3*10^14, if it exists. - Giovanni Resta, Feb 27 2020

Examples

			699796 = 836^2 + 30^2 and 697996 = 836^2 - 30^2.
		

Crossrefs

Programs

  • Mathematica
    Do[If[IntegerReverse[a^2+b^2]==a^2-b^2,Print[{a^2+b^2,a,b}]],{a,1,50000},{b,1,a-1}]
  • PARI
    isok(k) = {my(r = fromdigits(Vecrev(digits(k))), s = r+k, d = k-r); d && !(s % 2) && issquare(s/2) && !(d % 2) && issquare(d/2); } \\ Michel Marcus, Feb 27 2020

Extensions

a(6)-a(18) from Giovanni Resta, Feb 27 2020
a(19)-a(20) from Jinyuan Wang, Apr 10 2025

A369612 Numbers k such that k divides Sum_{i=1..k} A004086(i).

Original entry on oeis.org

1, 3, 5, 7, 9, 18, 50, 89, 147, 161, 702, 999, 1323, 1998, 2091, 3042, 3072, 3753, 7982, 13408, 32493, 33867, 99999, 179922, 199998, 368121, 375897, 384876, 741137, 993006, 1173628, 1410462, 2021017, 3160593, 7212528, 9975778, 9999999, 17052657, 18093882, 18782433
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 27 2024

Keywords

Comments

Numbers k that divide A062918(k).

Examples

			Sum_{i=1..18} A004086(i) / 18 = 414/18 = 23 thus k = 18 is a term.
		

Crossrefs

Programs

A370842 Numbers k that can be added without carries to their digit reversal (A004086(k)).

Original entry on oeis.org

0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 60, 61, 62, 63, 70, 71, 72, 80, 81, 90, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111, 112, 113
Offset: 1

Views

Author

Rémy Sigrist, Mar 03 2024

Keywords

Comments

All positive terms belong to A015976.

Examples

			42 belongs to the sequence as 42 + 24 does not lead to carries.
48 does not belong to the sequence as 48 + 84 leads to carries.
		

Crossrefs

Cf. A004086, A015976, A056964, A140900 (base-2 analog).

Programs

  • PARI
    is(n, base = 10) = { my (d = if (n, digits(n, base), [0]), p = d + Vecrev(d)); vecmax(p) < base }
Previous Showing 91-100 of 587 results. Next